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Algorithm Theoretical  Basis Document (ATBD)

Retrieval of Carbon Monoxide (CO) Profiles and Column Amounts of CO and Methane
(CH4) from MOPITT Observed Radiances

(Level 1 to Level 2)

1.0 Introduction

The intent of this document is to describe the algorithm involved in converting the Level 1
MOPITT radiances into the Level 2 products of retrieved CO profiles and column amounts of
CO and CH4.  An overview of the MOPITT retrieval objectives is given along with a brief
instrument description.

The MOPITT Level 1 to Level 2 data reduction algorithms are detailed in three sections.  First,
the forward model is described for both the CO thermal channels and the CO and CH4 solar
channels.  Second, the cloud detection and clearing algorithm is addressed, explaining how
MOPITT will determine clear, cloud contaminated and cloud cleared scenes.  Third, the retrieval
algorithm is presented and evaluated for the CO and CH4 channels.

The last section deals with practical considerations involved with the conversion of Level 1
radiance into a Level 2 product.

2.0 Overview and Background Information

2.1 Experimental Objective
The MOPITT experiment has been described by Drummond (1992).  The objective of MOPITT
CO measurements is to obtain profiles with a resolution of 22 km horizontally, 3 km vertically
and with an accuracy of 10% throughout the troposphere.  A CO total column amount
measurement will also be made with a 10% accuracy.  For CH4, the objective is to measure the
column in the troposphere to a precision of better than 1%, with a spatial resolution similar to
that of the CO measurement.  The column amounts of CO and CH4 will only be available on the
sunlit side of the orbit as standard level 2 MOPITT products.

The concentration of CO in the earth’s atmosphere had been increasing mainly because of
increased human activities (Khalil and Rasmussen, 1984).  However recent surface mesurments
by Novelli et al.(1994), show a leveling off of the CO concentration.  The full range of the
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effects of the increased concentration of CO is not fully understood at the present time, but it is
believed that CO is photochemically active and plays a major part in the concentration of OH
radicals in the troposphere.  Increased CO may deplete tropospheric OH radicals, thereby
reducing the yearly removal of many natural and anthropogenic trace species.  In particular, this
effect may add to the increase of CH4, which in turn could further reduce OH concentration.
Increased CO may also indirectly intensify global warming and perturb the stratospheric ozone
layer by increasing the lifetime of trace gases such as CH4, CH3Cl, CH3CCl3, and CFCs.
Global measurements of CO and CH4 will undoubtedly shed light on the concentration of OH,
which is one of the most important and difficult species to measure from space due to its very
low concentration.  Those measurements will enhance our knowledge of the chemistry of the
troposphere, and particularly how it interacts with the surface/ocean/biomass systems,
atmospheric transports, and the carbon cycle.  Global CO and CH4 measurements from MOPITT
will also be used in parallel modeling efforts to advance our understanding of global tropospheric
chemistry and its relationship to sources, sinks, and atmospheric transports, which can be
determined from other data.  Understanding their biogeochemical cycles and their intimate
interrelation with each other and with climate will lead to better predictions of possible effects of
anthropogenic activities.

2.2 Historical Perspective
The possibility of remotely measuring CO profiles in the troposphere from space-borne platform
observations of thermal infrared emission/absorption was first suggested by Ludwig et  al. in
1974.  Success of the Measurement of Air Pollution from Satellites (MAPS) on the second Space
Transport System engineering test flight (STS-2) of the shuttle in November 1981 proved the
feasibility of inferring CO profile from measurements by a nadir-viewing instrument (Reichle et
al Reichle et al., 1986; Reichle et al., 1989; Reichle et al., 1990).  The instrument employed is a
gas filter radiometer operating in the 4.7 µm region of the CO fundamental band with a passband
from 2080  to 2220 cm–1.  At the surface the instantaneous field of view is approximately 20 by
20 km.  Successive MAPS experiment provided more global tropospheric CO measurements and
further demonstrated the importance and feasibility of CO measurements from space.

Even though MAPS experiments have provided important global CO measurements for global
tropospheric chemistry study, limited coverage and only the average CO mixing ratio in the
middle of the troposphere is not adequate, and multiple level CO measurements that would
resolve the troposphere into several layers are needed.  MOPITT is an instrument designed to
meet this requirement and provide global CO measurements of the lower, middle, and upper
troposphere and daytime total columns of CO and CH4.  The MOPITT retrieval algorithm is
based on proven retrieval techniques, such as the maximum likelihood method (Rogers, 1976),
and is designed to maximize scientific return of the MOPITT experiment with state-of-the-art
retrieval techniques.

2.3 Instrument Characteristics
Drummond (1992) has outlined the MOPITT instrument concept.  The approach and viewing
geometry are shown in Fig. 2.3.1.  MOPITT, on the AM1 platform, measures upwelling thermal
emission from the atmosphere and surface in the long-wave channels, and reflected solar
radiation in the short-wave channels that has passed through the atmosphere, reflected at the
surface, and transmitted back up through the atmosphere.  Total atmospheric transmittance
derived from reflected sunlight measurements  is a convenient way to determine the total column
amount of a trace gas.  This technique requires that the target gas has a spectral band in a region
with large solar radiance, and the total optical depth along such a path is not too large.  Methane
has an overtone band near 2.2 µm with a measurable, but not large, total absorption for such a
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Figure 2.3.1  Schematic diagram of MOPITT measurement system.

path.  Similarly, CO has its first overtone band at 2.3 µm which is also suitable.  For vertical
profiling, the requirement is that significant and measurable portions of the signal must originate
in different atmospheric layers, which means that there must be a few values of different but
appreciable opacity in the atmosphere, and that there must also be a source of radiation in the
atmosphere.  Thermal emission is a radiation source, and the CO fundamental band at 4.7 µm has
enough opacity to determine atmospheric amounts, as demonstrated by Reichle et al. (1986,
1990).

All three bands are in regions of the spectrum with other bands, and the lines of the gases of
interest are mixed with those of interfering species.  It would be possible, in principle, to
measure the total emission or transmission of the species of interest, and correct for the
contributions of the interfering species.  However, the contributions of  other species are often
larger than those of the gases of interest, and their amounts are not always known with sufficient
accuracy.  The uncertainties of the corrections may significantly degrade, or even mask, changes
due to the gas of interest.

MOPITT is designed to meet this challenge by enhancing the sensitivity of the instrument to the
gas of interest.  Since all gases in the atmosphere are emitting/absorbing simultaneously, it is
essential that the effect of the gas of interest can be separated out from the general radiation field.
Further, since the information about the vertical distribution of the gas is contained within the
shape of an individual absorption/emission line, it is necessary to be able to resolve the line
shape, which generally requires high spectral resolution.  High spectral resolution leads to low



6

Output
Signal

Modulation
Method

Lock-in Amplifier

DetectorInput
Radiance

CO
Cell

Figure 2.3.2  A basic correlation radiometry system.

signal to noise, which means low instrument sensitivity.  Therefore, high sensitivity and high
spectral resolution requirements for tropospheric trace species remote sensing are difficult to
implement with conventional dispersing instruments.

Correlation Spectroscopy (CR), a non-dispersing spectroscopy technique, offers the opportunity
for high spectral resolution as well as high signal to noise.  The fundamental techniques of
correlation spectroscopy are illustrated in Fig.  2.3.2.  The cell contains a sample of the target
gas.  Assume monochromatic radiation enters from the left and is detected by the system on the
right, the output as a function of spectral frequency is shown in Fig. 2.3.3(a) for two different
amounts of gas in the absorption cell.  By cycling the amount of gas in the absorption cell
between the two states, the detector will be alternately looking through two different filters.  The
difference of the two signals will be identical to the output of a system in which the gas cell and
its modulator are replaced by an optical filter of profile shown by the Equivalent Difference
Transmission (EDT) curve in Fig. 2.3.3(b).  The apparatus has the following unique
characteristics:

(1) The equivalent filter profile, is zero between the spectral lines of the gas in the cell,
eliminating signals from spectral regions subject to interference by other species as
illustrated in Fig. 2.3.3(c).

(2) The filter profile has a maximum at each spectral line and thus the energy from each
spectral line in a broadband emission is collected simultaneously.  Therefore, the system
is very sensitive to radiation with a spectrum identical or similar to that of the gas in the
cell.  Obviously the spectrum of the gas itself is best correlated with the filter profile.

(3) The apparatus does not require any high precision optical adjustments.  In fact, the only
thing that affects the alignment is Doppler shift caused by relative motion between gas in
the cell and the emitting atmospheric gas.
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Figure 2.3.4  MOPITT optical channel diagram.

(4).  The shape of the equivalent filter is sensitive to the amount of gas in the cell.  If small 
amounts of gas are placed in the cell, the spectral lines will be narrow with incomplete 
absorption at the centers of the lines.  The EDT will have peaks in line centers, where 
absorption coefficients are largest.  If larger amounts of gas are placed in the cell, the 
lines will be broader and completely absorbed in the centers.  In this case, the EDT will 
have peaks in the line wings, where absorption coefficients are smaller.  By placing 
different amount of gas in the cell, different parts of the spectral line will be sampled, 
leading to altitude discrimination or vertical resolution.  The largest part of the 
upwelling signal emitted by the atmosphere comes from the altitude region in which the
optical depth is near unity.  Thus, a cell that is sensitive to the line center will respond 
to signals originating higher in the atmosphere, while a cell with larger amounts of gas 
will respond to signals originating in the wings of the pressure broadened lines, at 
higher pressures (lower altitudes).  The average of the signals obtained at the two states 
of the correlation cell can also be obtained.  The resulting Equivalent Average 
Transmittance (EAT) is also shown in Fig. 2.3.3(b).  It has the property that its 
transmittance is near unity away from the lines in the cell, but it reduces the signals at 
the centers of the lines.  Thus, it is sensitive to other gases, and especially to the surface 
contribution to the upwelling radiation in the spectral regions of interest.
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MOPITT makes use of two methods to modulate the gas transmittance.  The first is by pressure
modulation through the use of pressure modulated cells which have been described in detail by
Taylor  (1983).  The second is by modulating the length of the gas cell in the optical path,
through length modulated cells (Drummond, 1989).  A block diagram of the MOPITT optical
arrangement is shown in Fig. 2.3.4.  Two pressure modulated radiometers (PMR’s) with different
mean pressures and  four length modulated radiometers (LMR’s) are used.  Separating the 2 µm
and 4.7 µm channels with dichroic filters results in 8 separate spectral channels.  Their design
characteristics are summarized in Table 2.3.1; these values will be updated when measurements
of the characteristics of the flight instrument are made during its characterization and calibration.
Each channel produces an average (A) and a difference (D) signal.

Table 2.3.1  MOPITT nominal channel characteristics.  Channels 1,3,5, and 7 are CO thermal
channels.  Channels 2 and 6 are CO solar channels.  Channels 4 and 8 are CH4 solar channels.

Channel Characteristics 1 2 3 4 5 6 7 8

Gas Species CO CO CO CH4 CO CO CO CH4

Nominal Gas Pressure (kPa) 20 20 7.5 80 80 80 3.8 80

Mid-Wavenumber (cm–1) 2166 4285 2166 4430 2166 4285 2166 4430

Wavenumber Range (cm–1) 52 40 52 139 52 40 52 139

Mid-Wavelength (mm) 4.617 2.334 4.617 2.258 4.617 2.334 4.617 2.258

Wavelength Range (mm) 0.111 0.022 0.111 0.071 0.111 0.022 0.111 0.071

Modulator Type & Number LMC1 LMC1 PMC1 LMC2 LMC3 LMC3 PMC2 LMC4

Nominal Modulator Freq (HZ) 11.78 11.78 51.85 11.78 11.54 11.54 42.85 11.54

Nominal Chopper Freq (Hz) 518.5 518.5 518.5 518.5 600 600 600 600

Scan Mirror/Chopper Number #1 #1 #2 #2 #3 #3 #4 #4

Calibration Source Number #1 #1 #2 #2 #3 #3 #4 #4

Optical Table #1 #1 #1 #1 #2 #2 #2 #2

2.4 Experimental Study  and Modeling of Pressure Modulator Cell (PMC) and Length
Modulator Cell (LMC)
Pressure Modulator Radiometers (PMR) have been flown on numerous satellite missions
including Nimbus 4 and 5 in 1970 and 1972, Pioneer Venus in 1978, and the Upper Atmosphere
Research Satellite (UARS) in 1991.  Extensive laboratory experimental studies to understand the
operation of the pressure modulator cell (PMC) and the length modulator cells (LMC) have been
conducted by many groups around the world.  Models and calibration techniques of different
complexity have been developed.  May et al., at JPL presented their investigation of the PMC
with a tunable diode laser system in 1988 (May et al., 1988).  For the first time, the mean and
modulated transmission function of a pressure modulator cell have been measured during
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operation using a tunable diode laser spectrometer.  Good agreement was obtained between
theoretical calculations and measurements.  Roscoe and Wells reported on a very detailed
investigation of the variation of pressure, temperature, and transmission within a pressure
modulator in 1989 (Roscoe and Wells, 1989).  Berman et al., of the University of Toronto
published the results of their investigation of a CO correlation cell in 1993 (Berman et al., 1993).
Precise spectral line measurements of CO in an operating PMC was conducted using
spectroscopic techniques.  It demonstrated that dynamic spectroscopic measurements of both
temperature and pressure in a PMC can be made.  They also showed that gas amounts and
pressure in a PMC cell can be accurately measured after filling and sealing, thus providing a
noninvasive monitor of gas purity and amount during the ground testing phase of the satellite
instrumentation.  Those studies clearly demonstrated that the operation of the PMC and the cell
transfer function, can be measured and modeled accurately.  Similar measurements will be
conducted with the MOPITT PMC.

There is no change of pressure in the sealed correlation cell during the operation of LMC, and
the modulation is achieved by the change of the path length.  The calibration and modeling of
both PMC and LMC have been and will continue to be conducted at the University of Toronto.
We are confident that an accurate transfer function of the correlation cells will be obtained for
MOPITT.  More detailed information on the calibration and modeling of PMC and LMC can be
found in the references listed at the end of this document.
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3.0 MOPITT Level 1 to Level 2 Data Reduction Algorithm Description

3.1.1 Physics of the Problem: Forward Model for Clear Sky Radiances
The measurement of CO and CH4 in the troposphere requires an instrument that uses a nadir-
viewing geometry.  Compared to other atmospheric gases, the concentration of CO is relatively
low, in the range 50-200 ppbv, and this concentration can vary significantly over small spatial
and temporal scales.  In the case of CH4, a substantial change in the concentration near the
surface may only result in a small change in the total column amount above the source region.
The measurement system must therefore maximize total signal from these gases while using high
effective spectral resolution to ensure sensitivity to changes in their concentration.  This is best
achieved using gas correlation spectroscopy.

The MOPITT instrument will make measurements in three spectral regions.  A thermal channel
at 4.7 µm will be used to obtain profile information about the tropospheric CO distribution.
Short-wave solar reflectance channels will be used at 2.3 and 2.2 µm for total column
measurements of CO and CH4, respectively .

The forward model provides a numerical simulation of the radiative transfer of the problem and a
physical description of the measurement process.  The purpose of the forward model is twofold.
The first is to study the measurement characteristics, and developing a forward model is an
important step in the design of the instrument.  The second is to form part of the data retrieval
system.  Derivation of the desired atmospheric parameters from the instrument signals is an
inversion process.  An accurate forward model is a necessary condition for the successful
inversion.  Clouds are not considered in the forward model discussed here.  The MOPITT
approach for discriminating clear sky from clouds and the algorithm for deriving clear sky
radiances and cloud fraction under partially cloudy conditions are described in sections 3.2, 3.3
and 3.4, respectively.

3.1.2 The Radiative Transfer Equation

CO CO, CH4
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Figure 3.1.1  The comparative strengths of solar and terrestrial radiation in the range
 1000-5000 cm–1.  A terrestrial thermal radiation temperature of 260 K has been assumed and a solar
radiation temperature of 5780 K.  The solar curve has been corrected for a Lambertian reflector with
reflectivity varying from 1% at 1000 cm–1 to 25% at  5000 cm–1.  Also indicated are the spectral
intervals of interest to MOPITT.
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For the MOPITT spectral regions of interest, the monochromatic radiance ICLEAR(ν,h) at the top of
the atmosphere can be described by the radiative transfer equation,

I h I h h B T z
d z

dz
dzCLEAR

s s

h

h

s

( , ) ( , ) ( , ) ( , ( ))
( , )ν ν τ ν ν τ ν= + ∫ , (3.1.1)

where I(ν,hs ) is the upwelling monochromatic radiance at the surface hs [W/(m2.sr.cm–1)]; τ(ν,
z) is the monochromatic atmospheric transmittance from z to h; B(ν,T(z)) is the Planck function
[W/(m2.sr.cm–1)]; and h  is the height of the instrument platform [m].  The first term on the right
of Eq. (3.1.1) describes the radiation reaching the instrument from the Earth’s surface, the second
gives the contribution to the total radiance from atmospheric self emission between the surface
and the instrument.  The radiative transfer equation for a cloudy atmosphere is given in section
3.2.1.

The boundary radiance term is composed of two parts:

I(ν,hs ) = εB(ν,Ts ) + (1 − ε )Ib (ν,hs ), (3.1.2)

where ε  is the surface emissivity, Ts is the surface temperature, and Ib is the downward radiance
perpendicuar to the earth surface.  The latter includes both solar radiation and the thermal
emission of the atmosphere.

The relative importance of the two terms of Eq. (3.1.1) depends essentially on the wavelength of
the observation.  This is illustrated in Figure 3.1.1.  At longer wavelengths, where the solar
spectrum is weak and the ground reflectivity is low the two terms are of equal magnitude.  The
boundary radiance term is then dominated by thermal radiation.  However, at shorter
wavelengths, the first term usually dominates because of the strength of the solar spectrum and
the increasing surface reflectivity.

The boundary radiance term is determined partly by the transmittance τ(ν,hs), which in turn
depends on the total column of the absorbing gas, whereas the differential in the second term of
Eq. (3.1.1) is strongly affected by the height distribution.  Measurements performed by
monitoring solar radiation tend to measure the total column amount of gas (remember that the
radiation traverses the atmosphere twice), whereas those performed by monitoring terrestrial
radiation can obtain vertical profile information.

3.1.3 The CO Thermal Channels
The CO channel at 4.7 µm has a preliminary bandpass of 2140-2192 cm–1 and covers the R-
branch of the CO(1) fundamental band.  This band is at the short-wave end of the
Earth/atmosphere thermal emission spectrum.  The gas correlation technique, used in the PMRs
and LMRs of MOPITT, serves to make the instrument particularly sensitive to that component of
the total channel signal from the gas being measured and allows high effective signal-to-noise.
However, there is a contaminating signal due to the presence of bands of other gases, particularly
H2O, CO2, O3, and N2O in this spectral region (Figure 3.1.2).  This contamination can be
reduced by carefully choosing the channel passband.

MOPITT uses a nadir-viewing geometry, and the Earth’s surface is always in the field of view of
the instrument.  Because relatively weak tropospheric bands that are not optically thick through
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the vertical atmosphere are used, the surface will always provide the primary signal at the
radiometer in the 4.7 µm thermal channel.  It is therefore important to characterize accurately the
surface temperature and emissivity.  The radiation seen at 2140 cm–1 for a nadir view at the
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Figure 3.1.2  The atmospheric transmittance for a nadir view of the atmosphere in the 4.7 µm spectral
interval.  The transmittance of each of the important absorbing gases is shown individually.  Spectra
are calculated at a resolution of 0.5 cm–1.  The CO thermal channel passband is also indicated.

top of the atmosphere is shown in Figure 3.1.3.  The gas signatures appear in absorption due to
the fact that the emitting layers of the atmosphere are at a lower temperature than the surface.
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The reflected downward radiance is, however, not negligible.  For the daytime measurement, this
reflected radiance is mainly the transmitted sunlight, while for the nighttime measurement, the
downward radiance is the thermal emission of the lower atmosphere.  As a result, both terms in
Eq. (3.3.1) must be taken into account.
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Figure 3.1.3  The total atmospheric radiance for a nadir view of the Earth surface in the 4.7 µm
spectral region.  The calculation assumes the U.S. Standard Atmosphere and a Lambertian surface
with temperature and emissivity of 289 K and 0.98, respectively.  The spectrum is calculated at a
resolution of 0.5 cm–1.  The CO thermal channel passband is also indicated.

3.1.4 The CO and CH4 Solar Channels
The CO short-wave channel utilizes reflected solar radiation for making the total column
retrieval.  It spans the R- branch of the first excited band at 2.3 µm and the provisional spectral
bandpass is set at 4265-4305 cm–1.  This is a relatively weak band, and considerations of signal-
to-noise and the effect of contaminating gas absorption from H2O and CH4 are important.  The
CH4 short-wave channel has a wide bandpass, provisionally 4360-4500 cm–1, and covers several
spectral bands.  This is a relatively clean channel in terms of contaminating atmospheric
absorption from other gases, with only weak interfering lines of H2O, CO2, and N2O present.

The atmospheric transmittance of the optically active gases in the spectral region of the CO and
CH4 solar channels is shown in Figure 3.1.4.  Figure 3.1.5 shows the nadir-viewing atmospheric
radiance with the reflected solar radiation modified by atmospheric absorption.  In the 2.3 and
2.2 µm bands, the signals are dominated by the reflected solar radiation, i.e., the radiance is
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dominated by the second term on the left of Eq. (3.1.2).  Neglecting scattering, Eq. (3.1.1)
simplifies to:

I h I h rCLEAR
O s s( , ) ( ) ( , )ν ν τ ν= , (3.1.3)
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Figure 3.1.4  The atmospheric transmittance for a nadir view of the atmosphere over the 2.3 and 2.2
µm spectral interval.  The transmittance of each of the important absorbing gases is shown
individually.  Spectra are calculated at a resolution of 0.5 cm–1.  Note the changes in transmittance
scale.  The CO and CH4 solar channel passbands are also indicated.
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where rs=(1–ε) is the surface reflectivity, Io is the solar radiance, and τ(ν,hs ) is the total
transmittance for a slant path between the top of the atmosphere and the surface for a solar zenith
angle of θsun,  and then upward to the observation point h  at the satellite viewing angle with
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Figure 3.1.5  The total atmospheric radiance for a nadir view of the Earth surface over the 2.3 - 2.2
µm spectral region.  The calculation assumes the U.S. Standard Atmosphere and a Lambertian surface
with temperature and emissivity of 289 K and 0.90, respectively.  The spectrum is calculated at a
resolution of 0.5 cm–1.  The CO and CH4 solar channel passbands are also indicated.

respect to nadir of θsat.  This is a function of the total absorber density ρ(z), and the mixing ratio
q(z),  and absorption coefficient k(ν,z) of each gas, such that

τ(ν,hs ) = exp{– d ′z
hs

h

∫ (secθsun + secθsat )ρ( ′z ) kn (ν, ′z )qn ( ′z )
n

∑ }, (3.1.4)

where the summation is over all contributing absorbers n.

3.1.5 The Atmospheric Model
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The forward model assumes the atmosphere to be plane-parallel.  Atmospheric state  parameters
and the distributions of the gas constituents are constructed from climatological or
meteorological data sources.

The model atmosphere is divided into layers for the radiative transfer calculation.  Typically, 40
layers are used, of width 1 km in the first 30 km, and of a coarser structure in the upper
atmosphere to 100 km.  Each layer is considered as a homogeneous path for the transmittance
calculation, and the temperature and pressure are represented by Curtis-Godson absorber
weighted mean values.  The integration over the total atmospheric absorption path then becomes
a summation over the constituent layers.

In the clear sky calculations, the lower surface is treated as Lambertian ( i.e., the reflected
radiation is assumed to be unpolarized and isotropic, and is independent of the initial state of
polarization and incident angle).  This can be represented by a Planck function at temperature Ts
and a constant emissivity.  The effects of polarization and wavelength dependent emissivity
within the MOPITT filter bandpass will be considered in future versions.

3.1.6 The Line-by-Line Radiative Transfer Model
Radiative transfer calculations are performed using the GENLN2 line-by-line transmittance and
radiance model developed at Oxford University and NCAR (Edwards, 1992).  The algorithm has
been designed for speed of computation, and a modular structure serves as a basis for future
modification and expansion.  Calculations are performed for a multi-layered atmosphere of
mixed gases, and several different viewing geometries are available.  Optimal atmospheric layers
are calculated and refraction and spherical geometry are considered when appropriate.  Several
line shapes and continuum absorption are available.  A two stage spectral calculation is
performed for regions close to and far from line center and there is a full treatment of line wings
and of lines lying outside the spectral range of interest.

Spectral line parameters are presently taken from the 1992 edition of the HITRAN database
(Rothman et al., 1992).  The modeling of gas correlation spectroscopy requires accurate spectral
line parameters.  The spectral data for CO has been recalculated for the 1992 HITRAN database.
The transition frequencies and line strengths do not, however, differ substantially from the 1986
HITRAN edition.  The considered accuracies for the transition wavenumbers and the line
strengths, are respectively, better than 10–4 cm–1 and 2-5%, for both the fundamental and first
overtone bands.  The other important parameters of air- and self-broadened half width and
temperature dependence of the air-broadened half width are new or changed considerably for the
1992 edition.  These are considered accurate within 5-10%.  For CH4, new laboratory results are
included for the lines of interest in the 2.3 µm spectral region.  The line positions are known to
better than 10-3 cm–1, and the strengths to within 5-10%.  However, only average values are
available for the line width parameters.  The new 1996 version of HITRAN will be incorporated
in the next version of the model.

The D-signals are in general much more sensitive to the accuracy of the line data than the A-
Signals because a greater part of the signal comes from the position of the correlation line itself.
Assuming the same spectral line data is used to model both the lines of the atmosphere and the
lines of the correlation cell, then there is some compensation for uncertainties in line width and
almost total compensation for uncertainties in line position.  The latter is important only to the
extent to which the overlap, with lines of the interfering species, changes.  The calculation of
MOPITT signals is most sensitive to the accuracy of the line strength data.  This has the biggest
effect on the high pressure LMR’s that will be used to make total c42olumn measurements and
provide profile information in the lower troposphere.  As described in section 3.1.7, these
radiometers have response functions that have broad peaks in the line wing and are zero close to
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line center in the case of the D-response.  They are non-zero, only away from the line center in
the case of the A-response radiometers.  If the line strength increases by the maximum
uncertainty of 5%, more absorption takes place in the wing and the maximum signal change of
15.4% occurs for the 80 kPa double pass LMR D-Signal.  The corresponding change in the A-
Signal is 6.7%.  The low pressure 2.5-5.0 kPa PMR is least affected with a 6.2% change in the
D-Signal and a 0.2% change in the A-Signal.  The low pressure PMR signals are most affected
by uncertainties in the line width as these are sensitive to absorption in a very narrow part of the
line profile at about one halfwidth from line center.  For the maximum line width uncertainty of
10%, the maximum associated signal change is 6.1% and occurs for the 2.5-5.0 kPa PMR D-
Signal.  The corresponding A-Signal change is 0.27%.  The high pressure 80 kPa LMR DP D-
Signal and A-Signal are changed by 3.8% and 1.8%, respectively.  A new version of HITRAN
was released in 1996.  In the spectral intervals of interest to MOPITT, there have been significant
improvements to the CO line strength data in both bands following the work of Goorvitch
(1994).  The data for CH4 are unchanged.

Gaseous absorption is modeled using the Voigt line shape with the exception of the H2O
absorption which is calculated using the line shape of Clough et al. (1980) to account for non-
Lorentzian line wings and the water vapor continuum.  H2O line wings have cutoff at a distance
of 25 cm–1 from the line center and at greater distances, the absorption is included using a
precomputed continuum calculated using all lines and the appropriate line shape.  GENLN2 uses
two calculation grids.  The spectral interval of interest is first divided into wide meshes, each
with a typical width of 1 cm–1.  Each wide mesh is then sub-divided to give the high-resolution
fine wavenumber grid.  This grid spacing is chosen so as to adequately sample Doppler-
broadened lines in the upper atmosphere.  The far-line wing and continuum absorption, which
change slowly with frequency, are calculated at three points within each wide mesh interval and
then interpolated onto the fine grid.  The calculation of spectral line absorption close to line
center, which changes rapidly with frequency, takes place on the fine wavenumber grid.  The
high resolution spectroscopic calculation is essential for the MOPITT instrument modeling.
Although the instrument measures integrated radiance over each passband, the gas correlation
cells in front of the radiometers create a spectral response that filters the radiance with a very
high spectral resolution.

Forward calculations needed for the retrieval process include the high resolution spectral
transmittance for each layer of the model atmosphere, the spectral radiance at the top of the
atmosphere, and the total signals for each radiometer.  The calculation proceeds
monochromatically,  on a layer-by-layer basis, starting at the top of the atmosphere with a solar
blackbody source function.  In the downward part of the calculation, this radiation is followed to
the Earth’s surface through the atmospheric layers where it is absorbed by the radiatively active
gases and also picks up a radiation component due to thermal emission.  On reaching the surface,
the radiation is reflected upwards together with the thermal radiation of the surface according to
the surface emissivity.  As this radiation proceeds from the surface to space, there is again
absorption and emission by the atmospheric gases.

3.1.7 The Instrument Model 
Both PMRs and LMRs are gas correlation radiometers in which the atmospheric radiation passes
through a cell containing the same gas as the atmospheric gas which is being measured.  The
MOPITT radiometer has eight gas correlation channels.  The six MOPITT cells contain: two
pressure modulated cells and two length modulated cells for CO profile measurement and two
length-modulated cells each for the CO and CH4 total column measurements.  Either the gas
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Figure 3.1.6  A- and D-signal response functions for a single spectral line in a 2.5–5.0 kPa PMR 
used in the CO thermal 4.7 µm measurement.  The cell transmittances at 2.5 and 5.0 kPa are shown

together with the difference (D) and average (A) responses of the cell.  Atmospheric radiation will
only reach the detector in spectral regions of non-zero response.

pressure inside the cell in the case of the PMR, or the effective gas cell length with the LMR, is
modulated, resulting in a modulation in the opacity of the cell due to that component of the
atmospheric radiation that was emitted by the cell gas species.  As noted in Sec. 2.3.3, this
produces fluctuations in the signal at the detector only inside the spectral lines of the gas species
contained in the cell.  Two signals are possible: the difference (D) signal and the average (A)
signal.  The D-signal results from differencing the signals for low and high cell opacity.  The A-
signal is achieved by asynchronously chopping the input signal with the modulation to measure
the mean radiation transmitted by the cell.  High effective resolution and signal-to-noise ratio are
possible because contributions from all lines of the cell gas species are sampled.  The principles
and operation of the PMR are discussed in detail by Taylor (1983), and of the LMR by
Drummond (1989).

The information content of the two signals, difference and average, are complementary to each
other.  The A-response function is low at the spectral line positions of the correlation gas and
high at other positions.  This provides information on the background radiance, which includes
the surface emission and the absorption due to other atmospheric constituents.  The D-response
function is high only at the spectral line positions of the correlation gas and is nearly opaque for
other spectral intervals.  This signal provides the target gas information.  This is illustrated for a
2.5–5.0 kPa PMR in Figure 3.1.6.
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sample different parts of the line wing.



21

At the center of a purely collision broadened spectral line, the PMR cell absorption for a given
cell length and temperature is independent of cell pressure, and the radiometer D-response is
zero.  Away from the line center, the D-response rises to a maximum and then decreases, the
exact form depending on the optical thickness of the gas cell.  For the optically thin case, the
maximum occurs at line center ±α L

, where α L  is Lorentz half width evaluated at the cell mean
pressure.  If Doppler broadening is present, then the absorption at line center is greater during the
high-pressure part of the modulator cycle and the response is greater than zero.  In the case of the
LMR, the D-response is a maximum at a line center in the optically thin case.  However, the cell
pressures needed for MOPITT are relatively large so that the cell is optically
thick at the line center frequencies for most channels.  This results in an LMR D-response
function with a similar shape to that of the PMR.

The pressure or length modulation cycle used for the cell determines the part of the spectral line
that is sampled.  With increasing pressure in the correlation cell, the double peaks of the D-
response function move outward from the line center.  The lower pressure PMR D-response
functions measure radiation from close to line center, while the higher pressure LMR D-mode
has a maximum response in the line wing as shown Figure 3.1.7.  Since the absorption of the
upwelling surface radiation in the line wing takes place at lower altitudes, it is possible to derive
information about the vertical CO profile by using a series of PMRs and LMRs at different
pressures.

The goal of the forward model is to calculate the instrument signals under the conditions of the
measurement.  The signals measured by the MOPITT radiometers are the radiance at the top of
the atmosphere, I(ν,h), convolved with the spectral response of the radiometer over the spectral
passband ∆ν,

  
S I v h R v dv i mi

A D

v

i
A D, ,, , ,= ( ) ( ) =∫

∆

1 K (3.1.5)

where Ri
A,D(ν) represents the average (A) or difference (D) radiometer response function for the

ith radiometer.

The total radiometer response can be written as the product of the response profile of the channel
blocking filter G(ν) and the gas correlation response, HA,D(ν),

RA,D(ν) = G(ν)H A,D(ν) (3.1.6)

Assume now that the blocker response profile G(ν)  varies very slowly over the wavenumber
width of a GENLN2 wide calculation mesh interval of width δν  (typically 1 cm–1).  If there are
N  wide mesh intervals j,  which need not have equal spacing, then Eq. (3.1.5) can be written

Si
A,D = Gjj =1

N∑ I(ν,h)Hi
A,D(ν)dν

δν j
∫ (3.1.7)

where

Gj = 1
δν j

G(ν)dν
δν j
∫ . (3.1.8)

The functions G(ν) and HD(ν) for the MOPITT 4.7 µm CO thermal channel PMR are shown in
Figure 3.1.9.  Also shown is the resultant spectrum when the response function is convolved with
the atmospheric radiance.  The instrument signal is then the integral of this spectrum over the
channel blocker response.
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The PMR or LMR cycle can be represented as a linear combination of K gas cells, each
containing the correlation gas.  In the PMR case, each cell has the same length but the pressure
and possibly the temperature differ according to the point that the cell represents on the
modulation curve.  With the LMR, the signal is alternated between just two gas cells of different
length, with the pressure remaining constant.  The gas correlation response is then approximated
as a weighted linear combination of the monochromatic transmittances of each cell

H A,D(ν) = ak
A,Dτk

k =1

K

∑ (ν)cell (3.1.9)

where τk(ν)cell  is the transmittance of cell k and ak
A,D  is the weighting coefficient.  In this way,

the commonly used two-cell approximation is modeled by setting K= 2. Cell 1 is the high
pressure or longer cell with a1 = -1 for the PMR and LMR, respectively, and cell 2 is the low
pressure or shorter cell with a2 = +1.  The gas correlation D-response in this case is

H D(ν) = τ2 (ν) − τ1(ν). (3.1.10)

The two-cell A-signal calculation is modeled by setting both a1 and a2 to 0.5 with the same cell
transmittances as in the D-signal case above.  The figure 3.1.8 shows a measured pressure and
temperature variation within the PMR cell.  This can be modeled by defining cells with
appropriate weights, at various times along the cycle with the corresponding temperature,
pressure and gas amount.

CO Temperature and Pressure Cycle 5mb at 10HZ
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Figure 3.1.8 Measured pressure and temperature variation within the CO PMC

The gas correlation response function HA,D(ν) depends on the pressure or length cycle of the
PMR or LMR and the temperature cycle.  Thus, the same function will be applicable to many
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atmospheric radiance calculations that use the same PMR or LMR.  The approach taken in
GENLN2 is to pre-compute HA,D(ν)  for a particular PMR or LMR on the GENLN2 fine
wavenumber grid and to store the result in a file for subsequent atmospheric calculations to use.
This avoids duplication of cell transmittance calculations and makes possible a PMR
representation with a larger number of composite cells.
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Figure 3.1.9  Three stages of the MOPITT measurements are illustrated in this figure.  The top panel
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panel shows the CO 2.55.0 kPa PMR D-response function HD (ν) together with the 4.7 µm  filter
profile G(ν).  The bottom panel shows the result of the convolution of the atmospheric radiance with
the D-response function.
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Away from strong absorption lines of the cell gas, the response function HD(ν)  approaches zero.
At such points it is unnecessary to compute the line-by-line atmospheric radiance.  The GENLN2
wide mesh wavenumber boundaries are chosen such that they fall either side of regions of non-
zero response. Wide meshes with zero response are then flagged.  Because the response function
and the wide mesh boundaries are input at the start of the GENLN2 calculation, line-by-line
calculation in these meshes can be switched off to save time.

3.1.7.1. The Fast Transmittance Model (MOPFAS)
Full line-by-line calculations of atmospheric transmittance and radiance are too slow to be of
practical use in forming the forward model of an operational retrieval scheme or even for
developing prototype algorithms that are to be run for a large number of cases.  It is, therefore,
necessary to have a fast transmittance model that runs several orders of magnitude faster than the
line-by-line calculation.  It must be capable of reproducing channel transmittances and their
dependence on the important variables of temperature, target gas amount, contaminating gas
amount (particularly H2O), and satellite and solar zenith angles.  The fast model should also be
able to calculate MOPITT channel radiances to within an acceptable accuracy when compared to
the full GENLN2  (Edwards, 1992) line-by-line calculation.

The approach taken for the first version of the fast transmittance model, MOPFAS-1, was to use
the method of McMillin and Fleming  (1976; Fleming and McMillin, 1977; McMillin et al.,
1979; Susskind et al., 1983).  The code for MOPITT was based on a version of the model
originally developed for the AIRS instrument (Strow and Hannon,  private communication,
1993), and was the first time the method had been applied to an instrument with PMRs and
LMRs.

The basic idea is that the transmittances from space, down to some atmospheric pressure level pi
can be parameterized as a function of the atmospheric state variables; temperature, mixing ratio,
view angle, etc.  If the transmittances are calculated accurately once using a line-by-line code for
a reference atmosphere, then the transmittances for any test atmosphere may be obtained by
perturbing the reference transmittances in a way that depends on the differences between the
reference and test atmospheric state variable profiles.  Because the integration in spectral space
over the channel passband is computationally expensive, we deal here only with instrument
function convolved transmittance T(pi).  The following relation is used to calculate an effective
layer (between consecutive pressure levels) transmittance for the test atmosphere,

T(p )

T(p )

T(p )

T(p )
Xi

i 1

i
ref

i 1
ref ij

j
ji

− −

= + ∑α ∆ . (3.1.11)

Here the j terms ∆Xji for layer i, describe the differences between the reference and test
atmosphere state variable profile.  The corresponding fitting parameters αij must be determined.
This is  described in the following section.

3.1.7.2. Determination of Fitting Coefficients
Transmittances and profile differences with the reference atmosphere are first calculated for a
diverse ensemble of training profiles.  Using (3.1.11), the coefficients αij can then be calculated
in each case.  Finally, a least-squares fit is made to obtain the best values α ij for the entire
ensemble.

3.1.7.2.1 Training profiles
Since the fast model will be used to calculate transmittances for a wide range of atmospheric
conditions, the expected variation must be represented in the diverse ensemble of training
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profiles that go into the least-squares fit.  The training profile set has been constructed using the
NCAR 3D chemical transport model (Muller and Brasseur,1995) for a general global
climatology together with measurements to provide profile extremes, such as very high CO
amounts in a polluted boundary layer.  A total of 57 profiles form the training ensemble.

3.1.7.2.2 Transmittance calculations
GENLN2 is used to calculate monochromatic transmittance spectra for each of the training
profiles.  Transmittances are formed from space down to each pressure level at several zenith
angles θ through the atmosphere.  For each MOPITT channel in turn, the resulting spectra τ(p,ν)
are convolved with the instrument channel response function R, to form the channel
transmittances,

T p R p
B p

B pi i
i

ii
( ) ( ) ( , )

( , )

( )
.= ∏∫ ν τ ν ν νd (3.1.12)

The overbar signifies a channel quantity spectrally averaged.  The Planck function term helps
ensure the correct emission frequency variation in the final radiative transfer equation.

In the fast transmittance model, we wish to describe the change in channel transmittance for
independent variations in the profile amounts of the target and contaminating gases.  In order to
do this, we need to form separate transmittance quantities for each gas that we will consider
independently, and a least-squares fit can be performed to generate separate fitting coefficients.

Because there is a considerable amount of line overlap between the gases, their transmittances
cannot be considered independently.  Assume here that we can divide the gases of interest into
three groups; fixed gases such as CO2, whose mixing ratio profiles will be assumed the same
everywhere, the target gas, which will be either CO or CH4, and a variable gas, such as H2O.  We
can form gas dependent transmittance quantities that take into consideration line overlap using
the build-up method described below.

The GENLN2 line-by-line calculations and MOPITT channel response function convolutions are
performed:

(i) for the fixed gases on their own, yielding TF
' ,

(ii) for the fixed and target gas combined monochromatically and then convolved, TFT
' ,

(iii)for the fixed, target, and variable gases combined monochromatically and then 

convolved, giving TFTV
' .

Representative channel transmittances for the three groups are then defined as,

T T ,         T
T

T
T

T

T
F F

'
T

FT
'

F
' V=

FTV
'

FT
'= =  ,     . (3.1.13)

This formulation has the property that the product of the components reproduces the

exact result,

TF × TT × TV = TFTV
' . (3.1.14)

The fitting is then performed separately for each of TF, TT, and TV.
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3.1.7.2.3 Determination of predictors
The j  predictor quantities ∆Xji in (3.1.1) involve differences in layer i between the training
profile quantities and the reference profile.  These are determined to a certain extent by trial and
error to discover quantities that determine the way in which the transmittance varies through the
atmosphere.  Suitable predictor elements of ∆Xji include,

∆ ∆ ∆ ∆T T T T u u u ui i i
ref

i i i i
ref ref

i= − = −( ),        2, ( sec sec ), ,θ θ 2 (3.1.15)

where T is the temperature and u the layer absorber amount.  To take account of the profile
differences above the current layer in determining the layer transmittance, we include weighted
terms such as
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At this stage the least-squares fitting can be performed to find the best values for αij for each of
the three gas components.

3.1.7.2.4 Use of the fast model MOPFAS-1
Once the fitting coefficients have been determined, the model may be used to calculate the
effective layer transmittances for a test profile presented by the retrieval algorithm.  The values
of ∆Xij are first calculated between the test and reference profiles for the three gas components
using (3.1.5) and (3.1.6), and then (3.1.1) is used along with the reference atmosphere
transmittances to obtain the test atmosphere effective layer transmittances for each gas
component.

The transmittances are then used in the MOPFAS radiative transfer calculation to obtain the
MOPITT channel radiance at the top of the atmosphere according to,

S T B T I T T T B T T BN s N N i i i
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i i
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1
1

1
Θ (3.1.17)

where ε is the surface emissivity, and IΘ  the solar source radiance.  The first term on the right of
(3.1.17) represents surface emission, the second term, the reflected downwelling solar and
thermal radiation, and the third term, the upwelling atmospheric emission.

The MOPFAS-1 model is currently used in the retrieval algorithm and was included as part of
the MOPITT algorithm Beta delivery. MOPITT channel radiances are calculated to better than
0.5% compared to the full line-by-line calculation and are some 105 times faster.  The full
MOPFAS-1 calculation scheme is shown in Figure 3.1.10.

3.1.7.3. Development of MOPFAS-2
A completely new code, MOPFAS-2, is currently under development and will replace MOPFAS-
1 in the MOPITT processing sometime in the autumn of 1996. MOPFAS-2 uses the OPTRAN
regression scheme developed by  McMillin et al. (1995a,b).

Transmittance through the atmosphere is essentially a function of the absorber amount.  The
absorber amount from space down to a given pressure level can vary dramatically with location
and season.  It also scales with the secant of the zenith angle for a given view geometry and
atmospheric profile.  This suggests the use of a column amount reference grid rather than a
pressure grid on which to fit the transmittance.  This is shown in Figure 3.1.11 where the CO
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Figure 3.1.10.  Flow diagram of MOPFAS fast transmittance calculation.
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absorber column and transmittance for the D-signal of an 80.0 kPa double-pass CO solar channel
LMR are shown as a function of pressure for five different atmospheric profiles.  When
transmittance is plotted as a function of column amount, an almost linear relation is obtained
which does not vary greatly with atmospheric profile.

Therefore, if transmittance were to be fitted on the column amount grid, the relation between
transmittance and absorber amount would become implicit, and terms containing pressure and
temperature at given absorber amount would become predictors of small changes in
transmittance.  Also, because absorber amount depends on ray angle, view geometry is
automatically accounted for.

3.1.7.3.1 Determination of MOPFAS-2 fitting coefficients
The new method uses essentially the same techniques described above for MOPFAS-1, only now
the fitting of transmittance takes place on the column amount grid according to,

T A

T A

T A

T A
C Zk

k

k
ref

k
ref kj jk

j

( )

( )

( )

( )
,

− −
= + ∑

1 1
∆ (3.1.18)

where T(Ak) is the MOPITT channel transmittance from space to absorber amount level k for one
of the three gas components, fixed, target, and variable; Ckj are the j fitting coefficients in layer
k, and ∆Zjk are the corresponding predictors.

The calculation scheme is as follows.  The MOPITT instrument function convolved
transmittances are calculated on a pressure grid using the GENLN2 line-by-line code for an
ensemble of training profiles as before.  The calculations are again performed for the three gas
components and different zenith angles.  The atmospheric profile quantities and transmittances
of each of the training atmospheres are then interpolated onto the absorber amount grid k of the
particular gas component.  This is illustrated in Figure 3.1.12.  One of the profiles is chosen as
the reference.  The maximum column amount that can be fitted will be determined by the
reference profile and therefore this has to be chosen with care so that the full range of expected
atmospheric column amounts can be accommodated.

Absorber amount grid layer difference predictors ∆Zjk, of j weighted quantities involving T, p,
and θ, that affect the transmittance are taken between each training profile in the ensemble and
the reference profile.  A least-squares fit is then used to calculate the best fitting coefficients Ckj
that relate the ensemble profile effective layer transmittances to those of the reference profile as
a function of  ∆Zjk.

3.1.7.3.2 Use of the fast model MOPFAS-2
The fitting coefficients Ck,  reference atmosphere column amount grid Ak and corresponding

transmittances T(Ak)ref are stored in the program.  When the retrieval algorithm presents a test
profile, the temperature and pressure are interpolated onto the reference column amount grid.
The predictor quantities ∆Zjk,  can then be formed for each layer and (3.1.18) used to determine
the test profile absorber amount layer transmittances.  These transmittances are then interpolated
back to the original pressure grid and used in the radiative transfer equation (3.1.17) as before.

Early tests of this model show it to be considerably more accurate than the MOPFAS-1 model.
Care has to be taken that the two interpolation stages involved in MOPFAS-2 are coded very
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efficiently so as not to adversely impact run time.  The fact that this is a completely new code has
allowed us to address this effectively.

3.2 Cloud Detection and Filtering Algorithm

The attenuation of radiation by clouds in the MOPITT field of view will have a significant
impact on the signals measured at 2.2µm, 2.3µm and 4.7µm.  In a four-year cloud study by
Wylie et al.(1994), using High Resolution Infrared Radiation Sounder (HIRS) data, they found
only 23% of the observations were cloud free.  HIRS has a field of view of 20 km which
compares well to the 22x22 km field of view of MOPITT.  Thus MOPITT can expect over 75%
of the observations to be cloud contaminated.

Clouds can generally be classified according to the altitudes they predominately exist at in the
atmosphere.  Low clouds, such as stratus and cumulus, are found at altitudes below 70.0kPa.
Middle clouds are found between 70.0kPa-40.0kPa, this class usually contains altostratus,
nimbostratus and altocumulus clouds.  High clouds are found above 40.0kPa, this class can
contain cirrus, cirrostratus, cirrocumulus and the tops of cumulonimbus clouds.  Wylie’s study
(1994),  using a CO2 slicing technique, found that low clouds were present in 26% of the
observations, middle clouds were present in 27% of the observations and 24% of the cases
contained high clouds.  They also found that 42% of the observations contained evidence of
cirrus clouds.

Using only cloud free sites would not allow enough coverage to give detailed information on
CO/CH4 distributions.  This amount of coverage would also limit the understanding of methane
and carbon monoxide distribution relationships to meteorological and cloud processes.  Finally,
limited coverage could also result in a statistically biased data set.  The MOPITT field of view of
1.8 degrees and the temporal and spatial variability of clouds, make it necessary to develop an
algorithm whereby MOPITT can identify areas that are clear, overcast or contain broken clouds.

The objective of this section is to describe a cloud detection and filtering algorithm to identify
and evaluate clear and cloudy pixels based on data available to MOPITT at launch.  Once a pixel
has been designated as cloud contaminated, it then goes through a cloud clearing algorithm and
the results are flagged.  The methodology is designed so that a cloud need not cover the entire
MOPITT field of view, however, the spectral cloud forcing must be greater than the instrument
noise and background profile noise to be detected.  Post-processing implementation of a cloud
mask from the MODIS EOS-AM instrument is also described

3.2.1 Physics of the Problem: Cloudy Sky Radiance
The interaction of solar radiation and thermal emission with clouds is a function of the cloud
particle characteristics.  Optical thickness and effective radius are often used to describe how
incident radiation reacts with a cloud and used to evaluate empirical measurements with
theoretical models.  Optical thickness is determined by the wavelength of incident radiation,
physical nature of the particles ( ice crystals, drops, droplets), their concentration and vertical
extent of the cloud.  The effective radius is defined as  (Hanson and Travis, 1974)

re r n r dr r n r dr= ( ) ( )∫ ∫3 2/ , (3.1.1)

where r is particle radius, and n(r) is particle size distribution.

In the solar channels, at 2.3 -2.4µm,  Nakajima and King (1990), Nakajima et al. (1991) and
King et al. (1990), have evaluated the reflectance of water clouds as a function of optical
thickness and effective radius at 2.14µm.  Their results show that at 2.14µm, cloud reflectance
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increases asymptotically with increasing optical thickness, leveling off as the solar absorption of
droplets increases.  Warren (1984) determined that at 2.2-2.3µm, ice particles have a negligible
absorption coefficient and reflectance is dependent on particle size, increasing as the particle size
decreases.

In the thermal channel, at 4.7µm, the distinction between a cloud and its underlying surface is
due not only to the reflectance properties of the cloud but also the clouds thermal emission.
Hanson and Pollack (1970) show that in the near infrared, liquid water clouds are distinguished
by a dominate thermal emission factor, while ice clouds can have equal contributions of thermal
emission and solar reflectance.  The 4.7µm channel is also sensitive to thermal emission through
semi-transparent clouds, resulting in a reduction of surface contrast and increased difficulty in
determining the presence of optically thin clouds.

The radiative transfer equation for a clear air radiance was given in Eq. 3.1.1.  The radiative
transfer equation for a cloud covered field of view is given by,
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dz
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(3.2.2)

where Ii k
CLOUD
,  is the channel i, radiance containing cloud type k, at the top of the atmosphere.

The radiative transfer equation, due to varying cloud properties ck, has additional terms not
included in the clear air radiance.  The first term on the right is the radiation reaching the
instrument from the cloud.  The second term gives the contribution to the total radiance from
atmospheric self emission between the surface and the instrument.  The third term is the radiation
that is reflected off the cloud top in the direction of the satellite.  The fourth term is the
downwelling thermal emission from the atmosphere.  The fifth term is the effect of scattering on
the channel and the last term is the radiation from the ground that is transmitted through the
cloud.  The pixel number is represented by j.  There are four 22x22 km pixels in each MOPITT
stare.

3.1.1 Mathematical Description of the Cloud Algorithm
The cloud cleared radiance is the radiance that would have been measured by the instrument if
no clouds were present in the field of view.  The majority of cloud clearing techniques are based
on the n* approach (Smith,1968) which utilizes information from adjacent pixels.  The algorithm
assumes that radiance from two spatially independent but geographically close locations differ
only in the amount of fractional cloud cover in the scene.  If clouds are present at a uniform
altitude, over similar terrain, then the clear air radiance is the same for both fields of view.

If α  represents the fraction of the pixel scene containing a single cloud,  then the observed
radiance is given by,

I I Ii
obs

i
CLEAR

i
CLOUD= −( ) +1 α α (3.2.3)

Following the approach developed by Joiner et al. (1995)  for the AIRS instrument,  their cloud
clearing methodology can be applied to the MOPITT radiometer channels, i.  For multiple cloud
types k, Eq. 3.2.3 becomes,

I I Ii
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k
k

i
CLEAR

k
k

i k
CLOUD= −



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+∑ ∑1 α α , (3.2.4)
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For each channel, the reconstructed clear column radiance, Ĩi  is calculated as,
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OBS= + −[ ] + + −[ ] + + −[ ]+ + −1 1 1 1 1 2 1 2η η η (3.2.5)

Using the adjacent four pixels in one MOPITT stare (J+1 =4), up to three cloud types (K=3),
can be determined from the sixteen radiometer channels (I=16), by solving the following set of
linear equations:
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In matrix form Eq. 3.2.6 becomes

A = Bη (3.2.7)

A least squares solution can be used to determine η.

3.2.3 Uncertainty Estimates for the Cloud Algorithm

In this approach, cloud identification is based on contrast between scenes and the ability to detect
a cloud signal which is larger than the instrument and background noise.  Thus a noise
covariance matrix is introduced into equation 3.2.7.  The uncorrelated elements are found on the
diagonal values of the channel noise covariance matrix N, and contain:

(i) Instrumental channel noise
(ii) Uncertainty in estimates of (Ι′

CLEAR–I1)
(iii)Computational Error

N NE N I I

I I I I C

ii i i surface i Tsurface

CO p CH p H O p T p

= + ( ) + ( )
+( ) + ( ) + ( ) + ( ) +( ) ( )

∆ ∆ ∆
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2 2 2

4 2

, ,

( ) ( )

(3.2.8)

Instrumental channel noise, is from the MDD document (Drummond et al., 1993) and will be
adjusted for measured noise levels after launch.  Uncertainty estimates will be determined from
experimental data and simulation studies.  Computational errors will be held as a constant and
determined empirically.

The solution to A = Bη becomes:

η = ′( ) ′− − −B W B B W A1 1 1 (3.2.9)

where W, is the inverse of the channel noise covariance matrix N.
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A solution for η, cannot be determine if the term (B′W–1 B) is effectively singular.  In these cases,
the radiance will be rejected and flag accordingly.  Once η is determined the cloud cleared
radiance Ĩi  can be calculated using Eq. 3.2.5.

Sensitivity studies using the NCAR GCM (Hack et al., 1993) and the CTM (Muller and
Brasseur, 1995) show that high clouds have a significant impact on all the MOPITT radiances.
MOPITT is insensitive to clouds below 95.0kPa.

Future studies will determine if the correlated, off-diagonal, elements will need to be evaluated
in the cloud retrieval algorithm.  In addition to the noise covariance matrix, studies will also be
developed to address the characteristics of cirrus clouds, semi-transparent clouds, cloud shadow
and sun glint.

3.2.4 Practical Considerations for the Cloud Algorithm
The MOPITT cloud algorithm will evaluate the four pixels found in each MOPITT stare.  First,
radiances from the initial guess I′CLEAR, will be generated.  Second, to determine channel
sensitivity to clouds, the radiances from a simulated overcast initial guess I′CLOUD, will been
generated.  If   | I′CLEAR - I′CLOUD  | < Limit,  then the channel is insensitive to clouds.  Only the
channels that show a sensitivity to clouds will be used to determine η.  The third step, after η has
been determine, is to derive a set of cloud cleared radiances.  Only the channels that are sensitive
to clouds will have a η correction applied to them.  Also, if the cloud cleared radiance minus the
observed radiance is within limits, the radiances are declared clear.

The last step is to perform an internal validation.  During the daytime the RMS for the CH4

channel radiances, both clear and cloud cleared, will be evaluated.  During the nighttime, the
RMS of the CO channel will be evaluated.  The nighttime radiance validation limits will have to
be larger, due to the larger temporal and spatial variance of CO in the atmosphere.  If the RMS of
the radiances for one stare are within acceptable limits, they will be passed on to the retrieval
algorithm.

3.2.5 Cloud Masking
After launch, cloud information may be available from other EOS_AM instruments.  MODIS
(King et al., 1992) is a high resolution radiometer with channels in the visible and infrared
regions of the spectrum.  MODIS will be generating a cloud mask at 250 and 1,000 meter
resolution.  The MODIS cloud mask would be interpreting the signal from the same atmospheric
and surface signatures as the MOPITT instrument but on a much finer scale.  Methods by which
it would be appropriate to aggregate the 1 km MODIS cloud mask data up to a MOPITT, 22 km
field of view will be investigated.  Areas found to be completely clear by MOPITT, will be cross
checked with the MODIS cloud mask.  Flagging of MOPITT pixels, from cloud mask data, will
occur at the same time the cross-track scans are analyzed.

The MODIS cloud mask algorithm starts with a single pixel (1000 m) and applies a series of
infrared window brightness threshold and difference (BTD) tests to determine cloud conditions.
The tests are separated into land/ ocean categories and are based on AVHRR cloud processing
techniques. (Ackerman et al., 1994).  The MODIS cloud mask (EOSDIS param 3660) is output
as a 32-bit word for each MODIS field of view (see Fig. 3.2.1).
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Decision 1 1=mask determined, 0=no decision

Summary of all algorithms 2 unobstructed FOV (quality flag)
11> 99% prob of clear
10> 95% prob of clear
01> 66% prob of clear
00= cloud

Ancillary information 1 visible data (1=usable, 0=not usable)
1 snow/ice (1=no, 0=yes)
2 land/water

(11=land, 10=wetland,
01=coastal, 00=water)

Results from cloud algorithms 1 IR threshold did not find cloud
1 IR diff. - did not find clouds
1 CO2 high cloud test - no high clouds
1 Near IR test - no thin cirrus
1 SWIR threshold did not find cloud
1 visible ratio did not find cloud
1 cloud shadow not found

Additional tests 1 passed temporal consistency test
1 passed spatial consistency test

250 m mask from vis tests 16 1=clear, 0=cloud for 16 FOV
 in 1 km FOV

Figure 3.2.1 MODIS cloud mask

3.3. CO Profile and Column Amount Retrieval for the Clear Sky and Cloud Cleared
Radiances

3.3.1. Mathematical Description of the Algorithm
The MOPITT CO retrieval algorithm uses a maximum likelihood method that has been described
by Rodgers (1976).  The forward signal calculations uses the fast radiative transfer model,
MOPFAS, as described in section 3.1.  First, the retrieval program retrieves the CO profiles
using all available measurement information.  The CO column amount is then derived from an
integration of the profile.

The forward equation for the CO profile retrieval problem can be written as:

  
v v w v
y F x b N= +( , ) ε , (3.3.1)
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where  
v
y  is the measurement vector,   

v
x  is the state vector,   

w
b  represents all forward model

parameters,   F x b( , )
v w

 is the forward model function,   
v
Nε  is the instrument noise.

In our algorithm, the measurement vector,   
w
y , is formed by measured radiances of all CO

channels, as defined in Eq. (3.1.5).  For the thermal band, Ai and Di  are used to represent the A
and D signals for the ith radiometer.  For the solar band, as indicated by Eqs. (3.1.3) and (3.1.5),
the ratio SD/SA is independent of the surface parameters, as long as the spectral variation of ε over
the bandpass is negligible.  Our forward model study has also shown that the effect of interfering
species is largely canceled when the ratio is taken.  For these reasons, we define a R signal as the
ratio of A and D signal, Ri =Di/Ai. and use the R signals in the retrieval.

As indicated by Eqs.(3.1.1, 3.1.2) and discussed in section (3.1), thermal band signals depend on
not only the atmospheric CO distribution but also several other atmospheric parameters and
surface parameters.  In our algorithm, the atmospheric temperature profiles and the distributions
of interfering constituents such as water vapor, N2O etc., are treated as known parameters.  Their
values will be provided by the EOS/AM platform as ancillary data.  The effective lower surface
temperature, Ts and thermal emissivity, ε, however, are treated as unknown parameters, along
with the CO mixing ratios for a set of layers.

Using these notations, the measurement vector and the state vector can be written as:
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where qi represent a layer-average CO mixing ratio.  The forward function is then linearized
around an initial guess state vector   

v
x0 :

  F x b F x b K x( , ) ( , )
w w v w v≅ +0 ∆ , (3.3.3)

and the matrix K is the weighting function:

K k
S

xij
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= ( ) =
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∂
∂

. (3.3.4)

The maximum likelihood solution to Eq.(3.31) using a Newtonian iteration is:
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where   
v
x0  is the a priori state vector and the initial guess for the retrieval, n is the order of

iteration, Ca is the a priori covariance matrix for CO and the surface parameters,

  
C E x x x xa

T= −( ) −( ){ }v v v v
0 0 (3.3.6)

and Cε is the measurement error covariance matrix,

  
C E N N T

ε ε ε= { }v v
. (3.3.7)

We have assumed that the instrument noise levels are uncorrelated between channels and used
zeros for the off-diagonal components of Cε.  The covariance for the retrieved state vector is:

ˆ ( )C C C K KC K C KCa a
T

a
T

a= − + −
ε

1
 . (3.3.8)

The a priori information, represented by the covariance matrix Ca and the initial guess state   
v
x0 ,

is an important component of the retrieval algorithm. We have explored two groups of CO
profiles as the retrieval a priori information.  One is compiled from aircraft in situ
measurements.  The other is compiled from the output of a chemical transport model developed.
at NCAR. (Muller and Brasseur, 1995)  For testing purposes, an ensemble of 152 in situ
measured profiles were used both as the true atmosphere, for retrieval simulations, and to
compute the a priori statistics for the retrieval.  These profiles are compiled from the work of
Seiler and Fishman (1981), STRATOZ III and TROPOZ II experiments by Marenco et al. (1989,
1994), and the GTE/TRACE-A experiment by Sachse et al. (private communication).

Figure 3.3.1 shows a comparison of the mean profiles between the in situ measurement ensemble
and the model output CO profiles.  Also shown in Figure 3.3.1 is a U.S. standard CO profile
from the AFGL atmospheric model (Anderson et al., 1986).  The large tail, near the surface, in
the in situ measured mean profile reflects the fact that the aircraft measurements are over
sampled in heavily polluted coastal cities and airports.  In our algorithm testing, we have
modified the boundary layer CO values to avoid the large variance produced by this over
sampling.
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Figure 3.3.1. CO profiles from a U. S. Standard atmosphere model, the in situ measurements, and a
3D model.

It is well known that the distribution of CO varies with latitude and season. (Novelli et al., 1994;
Reichle et al., 1986; Reichle et al., 1989; Reichle et al., 1990).  The typical southern hemisphere
mixing ratio is on average around 70 ppbv, while the northern hemisphere values are typically
between 100-200 ppbv.  The seasonal cycle has its peak value in late winter and early spring and
lower values in the summer.  Therefore a suitable climatology for an operational retrieval should
reflect these variations. We are in the process of enlarging the measurement database as well as
combining the measured and model output, to build a CO climatology and to make a priori
ensembles for several latitude bands.

3.3.2. Analysis and Characterization of the Algorithm

3.3.2.1. Forward Model Sensitivity
The weighting functions represent the sensitivities of the forward signals to the retrieval
parameters and are essential to the analysis and characterization of the retrieval.  We present the
weighting functions in three groups.  The first group, plotted in figure 3.3.2, is the sensitivity to
surface parameters.  The second group, plotted in Figure 3.3.3, is the CO sensitivity of the A
signals.  The third group, plotted in Figure 3.3.4, is the CO sensitivity of the D and R signals.
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Figure 3.3.2.  Sensitivities of MOPITT thermal band signals to the surface temperature and
emissivity

As indicated by Figure 3.3.2, the A signals have a larger sensitivity to surface parameters and
their sensitivities decrease as the modulation cell pressure increases.  The D signals are less
sensitive to surface parameters and their sensitivities increase as the modulation cell pressure
increases.

Figures 3.3.3 shows that the A signals are also very sensitive to the atmospheric CO, however,
the sensitivities all peak in the mid-troposphere (~ 50.0 kPa).  The D and R signals have a range
of sensitivities which provide the vertical resolutions that the profile retrieval requires.
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Figure 3.3.3 CO weighting functions for the thermal band A signals
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The CO weighting functions as displayed in figures 3.3.3 and 3.3.4, show that the sensitivity of
the signals have large overlaps in the vertical range.  The orthogonal components of the
weighting functions and their corresponding signal-to-noise ratios, for a unit change of CO, are
given by the eigenvectors and eigenvalues of an information matrix:

H K C KT= −
ε

1 , (3.3.9)

where K is the weighting function matrix and Cε represents the instrument noise as defined in
Eq.(3.3.7).  We have performed this analysis using the predicted instrument noise from the
MOPITT Mission Description Document (MDD) (Drummond et al., 1993).  The results of this
analysis are plotted in Figure 3.3.4.
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Figure 3.3.5. Three leading components of the weighting functions, their peak positions, their
corresponding signal-to-noise ratios, and their corresponding minimum measurable CO changes.
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As listed in the legend, the three leading components have the signal-to-noise ratio 5.7, 0.3, and
0.024 per ppbv CO change.  The inverse of these numbers, give the smallest measurable change
of CO in the direction defined by each corresponding component.  The peak positions of the
three components are as indicated in Figure 3.3.4.  Note that these results strongly depend on the
values used for Cε, i.e. the assumed instrument noise, which is subject to change for the actual
radiometers.

3.3.2.2. Characterization of the A Priori Covariance
A priori information on the atmospheric CO is an important component of the retrieval
algorithm.  Its representation in the algorithm includes a covariance matrix, which acts as a
constraint, and a mean profile, which is used as the initial guess profile.  To see the
characteristics of the a priori constraint, we can decompose the a priori covariance into
statistically uncorrelated modes using an eigen analysis.  This analysis is often referred to as the
empirical orthogonal function (EOF) analysis.  As an example, Figure 3.3.6 displays the five
leading eigenvectors of the covariance matrix, computed from the in situ measurement ensemble
and scaled by the square root of their corresponding eigenvalues.  These eigenvectors are
conventionally referred to as the EOFs.  Figure 3.3.7 displays the first five EOFs for the
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Figure 3.3.6.  Five leading eigenvectors for the covariance matrix computed from the in situ
measurement ensemble, scaled by the square roots of their corresponding eigenvalues as displayed in
the legend.



43

covariance computed from a mixture of measured and model output, with the model profiles
being predominate.  These vectors give the independent variance patterns.  Their corresponding
eigenvalues give the uncorrelated variance for each pattern.  The effectiveness of the
measurement can be evaluated in comparison with the values of the a priori  variance.
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Figure 3.3.7.  Five leading eigenvectors for the covariance matrix computed from a predominantly model
output ensemble, scaled by the square roots of their corresponding eigenvalues as displayed in the legend.

3.3.2.3. Characterization of the Retrieval
For the purpose of analyzing retrieval characteristics, the retrieved state can be expressed as a
transformation of the true state (Rodgers, 1990).  If we denote the true state as   

w
x , the a priori

state as  
w
x0 , and neglect the uncertainties of all model parameters, the forward model equation can

be written as:

  

w w w

w w w w

w w w w

y F x N

F x
F

x
x x N

y K x x N

= +

= + − +

= + − +

( )

( ) ( )

( )

ε

ε

ε

∂
∂0 0

0 0 (3.3.10)
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Similarly, denoting the retrieved state as   
ŵ
x , the inverse function as  I y( )

w
, we can write the

inverse model equation as:

  

w w

w w w

w w

ˆ ( )

( ) ( )

( )

x I y

I y
I

y
y y

I D y y

=

= + −

= + −

0 0

0 0

∂
∂

, (3.3.11)

where D=∂I/∂y is named the contribution function matrix and represents the sensitivity of the
inverse model function to the measurement vector.

Eqs. (3.3.10) and (3.3.11) can be combined to express the retrieved state as a weighted mean of
the true state and the a priori state, plus the contribution of the noise:

  

w w w

w w w w

w w w w

w w w

ˆ ( ( ), )

( ) ( )

( )

( )

x T F x N

T x DK x x DN

x A x x DN

Ax I A x DN

=

= + − +

≅ + − +

= + − +

ε

ε

ε

ε

0 0

0 0

0 (3.3.12)

where the rows of the matrix A=DK are named the averaging kernels.  In Eq.(3.3.12), the step
from line 2 to line 3 has assumed that the retrieval model is unbiased.  In our case, the explicit
form of the averaging kernel matrix can be shown as:

A C K K C K C Ka
T T

a= + −( )ε
1

(3.3.13)

Eq.(3.3.12) shows the importance of averaging kernels as characteristic functions of the retrieval.
The closer the matrix A is to the unit matrix, the better the retrieved state resembles the true
state.  The difference I-A represents the “smoothing error” which in turn reflects the limits of the
resolving power of the measurement.

Figure 3.3.8 shows an example set of averaging kernels for the MOPITT CO profile retrieval,
calculated using the weighting functions in Figure 3.3.3, the a priori covariance described in
Figure 3.3.5 and the noise values estimated in the MOPITT MDD (Drummond et al., 1993).  The
apparent groupings of the averaging kernel peaks around 20.0 kPa and 50.0 kPa reflects the
highest sensitivities of the forward model, as shown in Figure 3.3.5.
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Figure 3.3.8. The first seven averaging kernels for the CO profile retrieval using a two-
kilometer atmospheric layering

In order to quantify the smoothing error given by the matrix difference I-A,  We have performed
an eigenvalue analysis of the A matrix.  Since the A matrix is asymmetric, it has a set of left and
right eigenvectors.  If we use L and R to represent the matrix of left and right eigenvectors, A
can be written as:

A L RT= Λ , (3.3.14)

where Λ is a diagonal matrix with the eigenvalues of A on the diagonal.  Using the eigenvectors
as a set of basis functions, the last line of Eq.(3.3.12), neglecting the noise, can be transformed
into:

  
w w wˆ ( )′ ≅ ′ + − ′x x I xΛ Λ 0 (3.3.15)

where I is the identity matrix and

  
w w w w w wˆ ˆ, ,′ = ′ = ′ =x R x x R x and x R xT T T

0 0. (3.3.16)

It becomes very clear in Eq.(3.3.15) that the weight of the true profile in the retrieved state
depends on the size of the eigenvalues of A.  For those components whose corresponding
eigenvalues are close to unity, the retrieved profiles show a good resemblance to the true profile.

Figure 3.3.9 shows the three leading right eigenvectors of the A matrix, for the CO part of the
state vector.  Their corresponding eigenvalues are 1.0, 0.98 and 0.21.  According to (3.3.15), in
the directions defined by the first and second eigenvectors, which correspond to eigenvalues
equal to or near unity, the retrieved CO profile values well resemble the true CO profile.  In the
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direction defined by the third eigenvector, the retrieval gives a large weight to the initial guess
profile due to the large departure of the corresponding eigenvalue from unity.
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Figure 3.3.9. The three leading eigenvectors of the averaging kernel as plotted in Figure 3.3.8.

3.3.2.4. Effects of the Signal-to-Noise Ratio to the Retrieval Sensitivity and Vertical
Resolution
The forward sensitivities and retrieval resolutions characterized by Figures 3.3.5, 3.3.8 and 3.3.9
are result of a given set of signal-to-noise ratios (SNR).  An improved SNR will result in an
improved sensitivity and resolution, and vice versa.

Two important factors that control the SNR for clear sky conditions are the noise-equivalent-
radiance (NER) and the solar band surface reflectivity. For the analysis described in the previous
sections, we have used the noise levels as estimated in the MOPITT MDD, which is a
conservative estimate,  and a value of 10%, for solar channel surface reflectivity, in our analysis
and retrieval simulations.  To illustrate the effect of SNR on the retrieval, we have performed an
analysis of the characteristic functions using a reduced thermal D signal NER (by approximately
a factor of 3 from that listed in the MDD) and a solar reflectance term of 30%.  The results for
the orthogonal components of the weighting function space and the averaging kernels are given
in Figures 3.3.10 and 3.3.11, respectively.

Comparing Figure 3.3.10 with Figure 3.3.5, we note that the sensitivities of the first two
components are comparable.  The third and the fourth components are significantly improved.
The smallest measurable CO change for the third component decreased from ~40 ppbv to ~20
ppbv.  Additional contributions to the vertical resolution from the fourth component are as
marked in Figure 3.3.10.

Comparing Figure 3.3.11 with Figure 3.3.8, it is apparent that with an improved SNR the
averaging kernel peaks are more evenly spaced and better correspond to the layer positions of
retrieval.  This is consistent with the results in Figure 3.3.10  which indicates that with an
increased SNR, the instrument sensitivity spans a larger range in the profile space and results in a
smaller smoothing error.

Eigen analysis of this averaging kernel matrix yields a new set of eigenvalues.  There are now
four significant eigenvalues, as opposed to three, in the case represented by Figures 3.3.8 and
3.3.9.  Their values are 1.0, 0.99, 0.58 and 0.16.  This shows the increase of measurement
information content on account of the improved SNR.
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Results in this sub-section clearly point out the importance of a good SNR to retrieval sensitivity.
Currently, the MOPITT instrument is in the fabrication stage.  The noise levels for the actual
radiometers will not be available until prelaunch calibration activities are completed.
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Figure 3.3.10.  The four leading components of the weighting functions, their peak positions,
corresponding signal-to-noise ratios, and corresponding minimum measurable CO changes, using an
improved SNR as specified in the text.
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Figure 3.3.11.  The CO retrieval averaging kernels computed using the improved SNR as specified in the
text.

3.3.2.5. Effect of Varying Lower Surface Height to SNR
The lower surface pressure for each measurement pixel can vary with the change of terrain
height or the cloud top height.  With this change of surface pressure, the surface temperature will
also change.  The impact of this change of lower surface pressure and temperature to the
MOPITT SNR is simulated using a fixed solar reflectivity (10%).  Plotted in Figure 3.3.12 is the
sensitivity of the leading component as a function of lower surface pressure.

Figure 3.3.12 shows that the smallest measurable CO change increases rapidly as the lower
boundary rises above 40.0 kPa.  This is consistent with the information given in Figures 3.3.5
and 3.3.10.  The peak position of the leading component is around 5.0 kPa.  As the lower surface
rises above that range, the technique begins to rapidly loose its sensitivity.
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Figure 3.3.12.  Sensitivity of the leading component as a function of lower boundary pressure.

3.3.3. Retrieval Variances and Uncertainties
Many factors contribute to the retrieval error.  Using the methodology described in Rodgers
(1990), we can divide the error into four groups according to their sources.  Including all model
parameters explicitly, we rewrite Eq.(3.3.12) as

  

w w w w w w

w w w w w
ˆ ( , ) ( ) ( ) ( , , )

( ) ( ) ( , , )

x T x b DK x x DK b b D f x b b DN

x A x x A b b D f x b b DN

b

b

= + − + − + ′ +
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0 0 0 0

0 0 0

∆

∆
ε

ε (3.3.17)

where b represents all forward model parameters, Kb=∂F/∂b represents the forward model
sensitivity to model parameters, ∆f is the forward model error which represents the difference
between the true forward function and the forward model, and b′ represents the missing model
parameters that are responsible for the forward model error.  Again, we have assumed that the
retrieval algorithm is unbiased, since the bias should be identified and removed.  Subtract the
true state from both side of equation and rearranging terms, we have

  

w w w w

w

ˆ ( )( )

( )

x x A I x x

A b b

D f

DN

b

− = − −
+ −
+

+

0

0

∆

ε

←
←
←
←

smoothing error

model parameter error

forward model error

measurement error due to instrument noise (3.3.18)

The smoothing error and measurement error are intrinsic to the finite instrument sensitivity and
resolution.  The forward parameter error includes both instrument model error and ancillary data
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error.  Instrument error includes: the calibration error, the modulation cell pressure and
temperature error, and the spectroscopic data error.  The ancillary data error includes: the
uncertainty in the temperature profile and interfering species profiles, uncertainty in the lower
boundary pressure, etc.  We have estimated these error using both linear algebraic analysis and
ensemble retrieval experiments.

The objective of the error analysis is to determine the expected errors in the retrieved CO profiles
and column amounts of CO and CH4  from MOPITT data.  These errors can be both systematic
and random.  Systematic errors are, at least to first order, independent of time; they usually
represent constant bias in the zero or scaling of the results.  Random errors are time-varying;
they must be described by some statistical parameter such as the expected standard deviation in
the error.  An ubiquitous source of random error is instrument noise.  Rodgers (1990) has
developed general techniques to characterize errors in atmospheric profiles retrieved from
remote sounding measurements.  We intend to apply Rodgers’ techniques to the MOPITT error
analysis.  The pre-launch error analysis is based on the estimate of instrument noise.  After
launch, the error analysis will be updated to include the in-orbit instrument performance data.

3.3.3.1 Systematic Errors

Primary sources of systematic errors include:

(1). Forward model errors. Errors due to the forward model include spectral line parameters, line
shape, line mixing, continuum, and forward model approximations.  The CO error covariance
matrix, due to forward model is given by,

S DC Db b
T= (3.3.19)

where D is the instrument contribution function matrix, and Cb  is the forward model error
sensitivity matrix.

(2). Errors due to calibration uncertainties.  Calibration errors (gain and offset errors) will also
contribute to the systematic error.  During pre-flight instrument calibration,  uncertainties in
calibration can be estimated by looking at stable blackbody sources.  During flight, calibration
uncertainties can be estimated, to a certain degree, by examining the time series of the calibrated
space view radiances which are expected to be randomly distributed with a mean value of zero.

From the MOPITT calibration peer review document (Calibration Peer Review, March 2, 1994)
the total calibration uncertainty for the longwave channels is +/- 0.2 K, and the total calibration
uncertainty for shortwave channels is +/- 0.5 K.  The calibration error covariance matrix is
generated by setting the diagonal elements to, the square of the channel radiance error due to
calibration.  The off-diagonal elements are set to zero.  The CO error covariance matrix due to
instrument calibration uncertainties can be calculated as,

S DC DM cal cal
T

, ,= ε (3.3.20)

where Cε, cal is the calibration error covariance matrix, and D is the instrument contribution
function matrix.

(3). Errors due to instrument model.  Instrument model errors include spatial response error
(FOV), detector misalignment, spectral response error caused by cell pressure and temperature
error, spectral response error caused by band-blocking filter error (center wavelength
uncertainties, filter spectral response error, filter degradation and shift...).  These errors could
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become a major part of the overall systematic error.  For example, in the case of ISAMS,
temperature retrieval systematic errors are dominated by the uncertainties in the spectral
positions of ISAMS filters (Dudhia and Livesey, 1995).  Similarly, the instrument model error
covariance matrix can be formed by setting the diagonal elements to the square of the channel
radiance error due to the instrument model, and the off-diagonal elements to zero.  The CO error
covariance matrix due to the instrument model errors can be calculated as,

S DC DM inst inst
T

, ,= ε (3.3.21)

where Cε, inst is the instrument model error covariance matrix, and D is the instrument
contribution function matrix.

(4). Errors due to atmospheric temperature profile errors.  This error source could considered
part of the forward model error, but in order to examine the impact of atmospheric temperature
error on the accuracy of CO and CH4 retrieval, we will consider this error source separately.
Define a temperature retrieval sensitivity matrix DT as,

D
x

TT = ∂
∂

ˆ
(3.3.22)

where X̂  is the retrieved CO profile.  Therefore the error covariance matrix due to atmospheric
temperature error is given by,

S D C DT T T T
T= (3.3.23)

where CT is the temperature error covariance matrix.  It is important to include off-diagonal
elements because temperature errors at different levels are correlated.  Fortunately, atmospheric
temperature measurements are widely available from radiosonde reports and satellite retrievals.
Thus a realistic temperature error covariance matrix can be generated for the MOPITT retrieval
error analysis.

(5).  Errors due to atmospheric water vapor profile errors.  Similarly, this error source can be
considered as part of the forward model error, but in order to examine the impact of atmospheric
water vapor profile error on the accuracy of CO retrieval, we will consider this error source
separately.  Define a water vapor retrieval sensitivity matrix DH2O as,

D
x

xH O
H O

2

2

= ∂
∂

ˆ
(3.3.24)

where X̂  is the retrieved CO profile, and XH2O is the water vapor mixing ratio profile.  Therefore
the error covariance matrix due to atmospheric water vapor profile error is given by,

S D C DH O H O H O H O
T

2 2 2 2
=  (3.3.25)

where CH2O is the water vapor profile error covariance matrix.  It is important to include off-
diagonal elements because water vapor profile errors at different levels are correlated.  A
realistic water vapor covariance matrix can be developed from data available from NMC or
ECMWF.

Errors in other atmospheric species, such as N2O, O3, CO2, and surface parameters (emissivity
and reflectivity) will also lead to errors in retrieved CO and CH4.  However, their variability are
smaller compared with that of H2O, and climatology values will be used in the forward model
calculations.



52

(6).  Smoothing error or a priori error.  The smoothing error or a priori error represents the
difference between the retrieved smoothed atmospheric CO profile and the high vertical
resolution a priori CO profile.  Smoothing errors are mainly caused by the finite vertical
resolution of the MOPITT measurement.  In reality, it is relatively difficult to estimate the
smoothing error because it is difficult to get an a priori data set that contains all the realistic
small scale features of atmospheric CO.  If a representative a priori covariance matrix can be
constructed, the smoothing error can be calculated as,

S A I C A Ism a
T= − −( ) ( ) (3.3.26)

where A is the averaging kernel, I is the identity matrix, and Ca  is the a priori covariance matrix.

3.3.3.2. Random Error

The main source of random error is the instrument noise.  Potential random error sources
include:

(1).  Errors due to instrument, detector, and electronic noise.  The noise-equivalent-radiance
(NER) predicted by the MOPITT radiometric model is used to form the instrument noise
covariance matrix Cε,noise.  Since the instrument noise, of the different channels, is not correlated,
the off-diagonal elements can be set to zero.

S DC DM noise noise
T

, ,= ε (3.3.27)

where D is the contribution function matrix.

(2).  FOV smearing due to pointing jitter.  For a nadir sounder such as MOPITT, with a nadir
FOV of 22 km x 22 km, errors due to pointing jitter may be negligible.  However, errors due to
FOV smearing during instrument stare (~ 400 ms) may be significant and both will be evaluated.

3.3.3.3. Total Error
The total error covariance is given by

S S S S S S S Sb M cal M inst T H O sm M noise= + + + + + +, , ,2
(3.3.28)

As a preliminary estimate, the square root of the diagonal elements can be considered as the CO
and CH4 retrieval error.

For example, the retrieval errors due to instrument noise and smoothing are calculated using the
approaches described above.  The CO covariance matrix was generated using 152 aircraft in
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Table 3.3.1  Comparison of linear error analysis and retrieval simulation results
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Figure 3.3.13   Retrieval errors due to instrument noise and smoothing.  Short dash line (green) is the
error due to instrument noise, dot line (purple) is the smoothing error, solid line is the total error due
to smoothing and instrument noise, and the long dash line is the RMS error of retrieval simulations
using the prototype retrieval algorithm.  The dash-dot line on the far right is the mean a priori profile
error.
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situ measurement profiles compiled from Seiler and Fishman (W. Seiler and J. Fishman, 1981),
STRATOZ III experiment (Marenco and Prieur, 1989), TROPOZ II experiment (Marenco,
1994), and the GTE/TRACE-A experiment (Sachse and Logan, private communication, 1994).
Because most of those measurements were conducted in polluted coastal area with high CO
concentration in the lower troposphere, the covariance generated is more representative of
polluted region rather than the global CO distribution.  The instrument noise covariance is
generated using the NER of each channel described in the MOPITT Mission Description
Document, the diagonal elements are the squares of the channel NER, and off-diagonal elements
are set to zero because the noise of each channel are not correlated.  The smoothing error, error
due to instrument noise, and the RMS of the two are plotted in Figure 3.3.13.  The linear error
analysis result is also compared with retrieval simulation statistics using the prototype retrieval
algorithm.  The retrieval simulation used 152  CO profiles.  The RMS error is also plotted in
Figure 3.3.13.  It can be seen that there is excellent agreement between the total error from linear
error analysis and retrieval simulation statistics.  The smoothing error dominates the total error,
which is mainly due to the relatively low vertical resolution associated with nadir sounding
technique used in MOPITT.  The relatively large errors in the lower troposphere below about
80.0 kPa and in the upper troposphere above 20.0 kPa are mainly due to the bias in the
covariance matrix as discussed before, which is also evident from the background profile error
plot in Figure 3.3.13.  It is expected that a better CO covariance matrix will be generated when
additional CO profiles are obtained over more diverse geographical regions.  Analysis of errors
due to other sources including forward model error, calibration, instrument model, temperature
profile error, and H2O profile error are in progress.

 3.3.4. Evaluation and Testing
Numerous ensemble retrieval experiments have been conducted, both to evaluate and test the
algorithm and to study the sensitivity of the retrieval to various parameters.  Some sample results
are given below.  These experiments were conducted using the in situ measurement ensemble as
the true atmosphere.  The ensemble mean and variance were used as the retrieval a priori
constraints.  The noise levels were taken from the MOPITT MDD (Drummond et al., 1993) and
the retrieval used a two-kilometer layering.  The retrieved profiles are reported as layer average
mixing ratios.

The first four sets of retrieval experiments were designed to isolate and estimate the effect of
instrument smoothing, instrument noise and the uncertainties in the ancillary data (i.e., the water
vapor profile and the temperature profile information).  The results of CO column retrieval are
given in Figure 3.3.14.  The profile retrieval results are shown in Figure 3.3.15.

In Figure 3.3.14, the length of each horizontal bar indicates the ensemble RMS of the CO
column amount retrieval error.  The experimental results show an approximately 1% increase of
error due to the instrument noise, an approximately 11

2% increase of error due to a 10% water
vapor profile random error, and an approximately 2 1

2% increase of error for a 2 K temperature
random error.
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Figure 3.3.14. The ensemble RMS error for the four CO column amount retrieval experiments.

Figure 3.3.15 shows the ensemble RMS error for first seven layers in the CO profile retrieval.
The average of the seven layers is given in the legend.  Experiment #1 is retrieved from
simulated “perfect radiance”.  In this case, the error is entirely due to the instrument smoothing.
Experiment #2 is retrieved from simulated noisy radiance.  Comparison of the two experiments
shows that retrieval error, for the case of 2-km layering, increased 2% for the given noise level.
Experiments #3 and #4 show the retrieval error due to a 10% water vapor profile uncertainty and
a 2 K temperature profile uncertainty.

Again, the retrieval error is smaller for the ranges where MOPITT has higher measurement
sensitivities, as shown in Figure 3.3.5. Note that these results depend not only on the noise level
used in the measurement covariance but also on the layering used for comparison of the retrieved
with the true profile.
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Figure 3.3.15. Ensemble RMS for four CO profile retrieval experiments.  In experiment #1, a
simulated perfect radiance was used as a measurement signals, i.e., there were no errors in the
ancillary data.   In experiment #2, instrument noise is included in the simulated radiance.  In
experiment #3, there were 10% random error in the water vapor profiles.  In experiment # 4, there
were 2 K random error in the temperature profiles.

Besides these four experiments, retrieval experiments have also been conducted to evaluate the
retrieval sensitivities to modulation cell pressure and temperature error, to compare the daytime
and the nighttime measurements, to estimate the retrieval error due to temperature profile
inversions and the impact of errors in estimating the lower boundary pressure, etc.

 3.4 CH4 Column Amount Retrieval Algorithm for the Clear Sky and Cloud Cleared
Radiances

3.4.1. Description of the Algorithm
The methane retrieval algorithm follows exactly the CO column amount retrieval described in
the section 3.3.1.  As specified in section 3.1.4, MOPITT has two identical CH4 channels in the
2.2 µm solar band.  The present version of the prototype retrieval algorithm uses one R signal, as
defined in section 3.3.1, for tropospheric CH4 column amount retrievals.

Although there is only on piece of information from the measurement, it can be shown that it is
advantageous to perform a profile retrieval as described in Eqs.(3.3.1)-(3.3.5).  The retrieved
column amount is obtained from an integration of the profile.  In this case, the measurement
vector has only one element and there is no need to have surface parameters in the state vector.
Hence we have:



57

  
v
y S R= = ( )( ) ,1 7 8 ,

  

v

M
x x

q

q

q

j

m

= =



















( )

1

2 . (3.4.1)

The dimension of the weighting function matrix in this case is 1×m,

K k
S

xj
j

= ( ) =








1

1∂
∂

. (3.4.2)

A priori statistics for CH4 have been compiled using both the in situ measurement ensemble and
the model profile ensemble as described in the section 3.3.  The mean profile for the two
ensembles and the CH4 profile from the AFGL U.S. Standard atmospheric model (Anderson et
al., 1986) are displayed in Figure. 3.4.1.  An example of weighting function computed from the
in situ measurement mean profile is plotted in Figure 3.4.2.  Weighted by the corresponding
noise, the SNR per ppbv change in the CH4 mixing ratio is 0.03 which corresponds to a
measurable change of 31 ppbv in CH4 profile.

The five leading EOFs for the in situ measurement CH4 ensemble are given in Figure 3.4.3.  As
shown in the legend, the leading variance for this ensemble is ~126 ppbv.  This fairly large
variance is due to the fact that this ensemble collected measurements on a global scale and
throughout several seasons.  Similar to the CO distribution, the tropospheric CH4 distribution has
a latitudinal and seasonal variation (Steele et al., 1992)  An enlarged CH4  database is under
development which will allow the compilation of zonal and seasonal a priori statistics for
retrieval.
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Figure 3.4.1. CH4 profiles from a U. S. Standard atmosphere model, the in situ measurements, and a 3D
chemical transport model.
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Figure 3.4.2.  Weighting function for the R signal of CH4 channel.  The corresponding SNR and
measurable CH4 change are shown in the figure.
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Figure 3.4.3.  Five leading eigenvectors for the covariance matrix computed from the CH4 in situ
measurement ensemble, scaled by the square roots of their corresponding eigenvalues as displayed in the
legend.
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3.4.2. Algorithm Evaluation and Testing
The retrieval algorithm has been tested using simulated radiances from the in situ measurement
ensemble as described in the CO retrieval algorithm section.  The NER estimated in the MDD
was used as the instrument noise level.  The surface reflectivity was assumed to be 10%.  The
four retrieval experiments were designed to isolate and estimate the retrieval error due to:
instrument noise, atmospheric temperature profile and water vapor profile, the results are given
in Figure 3.4.4.

As shown in Figure 3.4.4, among all the factors considered, the instrument noise is the leading
contributor to the retrieval error.  The effect of the temperature profile uncertainty is negligible,
as expected from a solar band measurement.  The water vapor profile error is reduced by using
the R signal.

Another important source for CH4 retrieval error is the uncertainty in the absorption line
parameters.  Assessment of retrieval error, due to the uncertainty of this spectroscopic
information is in progress.
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Figure 3.4.4.  CH4 column amount retrieval errors from four retrieval experiments.  The length
of each horizontal bar indicates the percent RMS error for the 152 profile ensemble experiment.
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4.0 Practical Considerations for MOPITT Level 1 to Level 2 Data Reduction

The MOPITT Level 1-2 operational software will generate a retrieved CO profile and CO and
CH4 column amounts from the calibrated radiances for each pixel.  The software will conform to
the EOSDIS standards (SDP Toolkit, 1996).  It will invoke the SDP toolkit calls for pixel
location and TAI93 time format, it will also use the mathematical libraries (IMSL) that are
supported by EOSDIS.  The entire production software will be implemented and run at the
Langley Research Center DAAC.  A description of the MOP01 and MOP02 data products is
given in Appendix A.

4.1 Required Input Data
The Level 1 ingested, calibrated and geolocated radiances (MOPITT ATBD: Level 0-1, 1996),
will be combined with several auxiliary data sets to generate an initial guess for the cloud and
retrieval algorithms.  The auxiliary data sets will include surface properties: surface type and
elevation from the SDP Digital Elevation Model (DEM); surface reflectivities from the MOPITT
surface reflectivity data set (Zhen and Drummond, 1996);  surface pressure and temperature will
come from the NASA Data Assimilation Office (DAO) at Goddard Space Flight Center.  The
auxiliary data set of atmospheric profiles will include:  climatological profiles of CO and CH4;
all other profiles (temperature, water vapor etc.) will be supplied from DAO assimilated data
sets.  Interpolation, in time and space, of the auxiliary data sets will be required to generate the
initial conditions for the MOPITT pixel.

4.2 Data Processing Requirements
A M2_config file will be used to store the values of all limits and convergence criteria used in
the Level 2 processing.  Values contained in the M2_config file may be updated after launch and
validation activities are initiated.  Information regarding the version of the M2_config file used
to process the data, will be recorded in the Level 2 product.

As described in section 3.2, the Level 1 radiances along with the auxiliary data will be used to
identify clouds in the MOPITT field of view.  Only clear and cloud cleared radiances will be
passed on to the retrieval algorithm.  Radiances that are rejected by the cloud algorithm will be
recorded in a separate file and will be examined off line.

4.3 Quality Control and Exception Handling
Level 1 ingested files are assumed to be calibrated and geolocated and have passed all the quality
checks in the Level 0-1 processing (MOPITT ATBD, Level 0-1, 1996).  Ancillary data will be
interpolated in time and space with error estimates assigned to its individual values.  These error
estimates will be accounted for by both the cloud and retrieval algorithms in their processing.

The cloud algorithm will assign flags to all radiances, indicating if they are clear or  the value of
the cloud correction applied to them.  If an area fails any of the cloud identification criteria, the
radiance is rejected and recorded in a separate file.  A check on the RMS of the clear and cloud
cleared radiances is used to validate the cloud correction technique (Section 3.2).

The retrieval algorithm will only process the radiances and use the auxiliary data that have
passed all prior quality control checks.  A convergence criteria will be placed on the retrieval
algorithm.  Any profiles failing to converge within a set number of iterations will be flagged and
removed from the Level 2 product.  All discarded radiances and retrievals will be analyzed off
line by the MOPITT algorithm development team.
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4.4 Validation
Validation of the MOPITT Level 1 to Level 2 algorithms and data products is currently being
accomplished using both simulated and experimental data.  The MOPITT simulator (MOPSIM)
is currently being used to assimilate various atmospheric data sets from UARS(Kumer et al.,
1993), NCAR-CCM2 (Hack et al., 1993), NCAR-CTM (Muller, J.-F. and G. P. Brasseur, 1995)
and to generate radiances along the expected MOPITT orbital track.  The MOPITT simulator,
together with the forward model is being used to understand channel sensitivities, generate cloud
contaminated radiances, and validate the level 1-2 algorithms.  The simulator will also be used to
address any postlaunch validation concerns.  An incremental examination of auxiliary data
inputs, forward model radiances, cloud clearing and retrieval techniques, will be in place to
address validation issues and help to identify systematic errors in the retrieved data set.

Experimental data is also being investigated for use in the validation of the Level 1-2 algorithms.
The MOPITT Algorithm Test Radiometer (MATR) was flown on the NASA Wallops T-39
aircraft in June of 1996.  MATR has the same design principle as the MOPITT instrument,
however, it has fewer channels.  Initial data processing is underway and data from the aircraft
flights will be used to validate the MOPITT algorithms.  Further MATR flights are planned for
September and October of 1996.

As described in section 3.3 experimental data from Seller and Fishman (W. Seiler and J.
Fishman, 1981), STRATOZ III experiment (Marenco and Prieur, 1989), TROPOZ II
experiment (Marenco, 1994), and the GTE/TRACE-A experiment (Sachse and Logan, private
communication, 1994) are being used to develop a priori data sets and validate retrieval
algorithms

MAPS data (Reichle et al.,1990 ) and potentially Micro MAPS data, will also be an important
source of information in development of the Level 1-2 retrieval algorithms and validation of the
MOPITT data products.  Postlaunch validation of the MOPITT products is detailed in the
MOPITT Validation Report (Wang et al., 1996).
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APPENDIX A

MOP01 & MOP02 Product Description

The following product code descriptions are from the MOPITT Science Data Products Catalog,
(1996).

EOSDIS Product Code:  MOP01

     Data Product Overview    

The MOPITT Level-1 data product consists of the geolocated, calibrated earth scene radiances,
associated instrument engineering data summaries and inflight calibration information.  Data
granules are one day in duration and limited to the earth scenes observed within the midnight to
midnight period.  Data from special calibration sequences and instrument diagnostic modes have
been excluded.

     Data Format   

The MOPITT Level-1B product is archived using the HDF-EOS Swath structure which is
described along with Application Program Interfaces (APIs) in references listed in Section 2.0.
This structure has been defined to represent time ordered, multi-channel instrument data such as
MOPITT.  HDF-EOS is an extension to the Hierarchical Data Format (HDF) standard developed
at the University of Illinois National Center for Supercomputer Applications.  Readers should
familarize themselves with HDF and HDF-EOS in advance of using the data.

     Data Content   

* NOTE -- DIMENSIONALITIES OF ARRAYS ARE DEFINED IN FORTRAN
ORDER, C ORDER IS REVERSED *

  DIMENSIONS  

ntrack = unlimited (number of cross-tracks = Number of swaths)

nstare = 29 (29 stares per cross track swath =  Number
in Crosstrack)

npixels = 4 (4 pixels per stare)

nchan = 8 (8 channels of radiance measurement)

nstate = 2 (Average and difference state of correlation
cell)

nengpoints = 102 (102 engineering data elements per swath)

neng = 2 (Engineering data elements are represented
as an average value over a swath and a
standard deviation)
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ncalib = 8 (Calibration parameters for each radiance
element: swath average gain, offset, noise
and internal Blackbody radiance and
associated standard deviations)

nsunparms = 2 (Number of solar location elements: zenith
and azimuth angles)

  GEOLOCATION FIELDS

The following are HDF VDATA variable names:

Track Count float: Number of tracks in this data set

Time : double (ntrack)  (Holds time of day and date in Tai93
format for first stare in swath. Subsequent
stares occur 450 milliseconds apart.See
Appendix A for description of Tai93 time
format)

Swath Quality : int32 (ntrack)  (TBD values to flag if entire
swath has valid values)

The following are HDF Scientific Data Set (SDS) variable names

Latitude : float (npixels,nstare,ntrack) (Latitude in degrees -90
to 90)

Longitude : float (npixels,nstare,ntrack) (Longitude in degrees -
180 to 180)

Solar Parms : float (nsunparms,npixels,nstare,ntrack) (Solar
direction angles at pixel locations in
degrees)

(in nsunparms dimension)

1=solar zenith angle

2=solar azimuth

Satellite Parms: float (nsunparms,npixels,nstare,ntrack)
(Satellite direction angles at pixel
locations in degrees)

(in nsunparms dimension)

1=satellite zenith angle

2=satellite azimuth

  DATA FIELDS  
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The following are HDF Scientific Data Set (SDS) variable names

MOPITT Radiances: float (nstate,nchan,npixels,nstare,ntrack)
(MOPITT radiances in watts meter-2 sr–1 -
swath format)

(in nstate dimension)

1=average state radiance

2=difference state radiance

Engineering Data: float (neng,nengpoints,ntrack)  (Engineering
data, one set per swath)

(in neng dimension)

1=Average over time of swath of
engineering element

2=Standard deviation of engineering
element

(in nengpoints dimension)

1 = cell pressure channel 1 CO  LMC
4.7mic in mb (20 mb nominal)

2 = cell pressure channel 2 CO  LMC
2.3mic in mb (20 mb nominal)

3 = cell pressure channel 3 CO  PMC(Low
state 50mb) 4.7mic

4 = cell pressure channel 3 CO
PMC(High state 100mb) 4.7mic

5 = cell pressure channel 4 CH4 LMC
2.4mic in mb (80 mb nominal)

6 = cell pressure channel 5 CO  LMC
4.7mic in mb (80 mb nominal)

7 = cell pressure channel 6 CO  LMC
2.3mic in mb (80 mb nominal)

8 = cell pressure channel 7 CO  PMC(Low
state 25mb)  4.7mic

9 = cell pressure channel 7 CO
PMC(High State 50mb)  4.7mic

10 =cell pressure channel 8 CH4 LMC
2.4mic in mb (80 mb nominal)
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11 - 18 = Cell temperature for channels
1 to 8 (1&2 and 5&6 are the same) in
K

19 - 22 = Blackbody temperature for 4
optical benches in K

23 - 26 = Chopper temperature for 4
optical benches in K

27 - 30 = Optics temperature for 4
optical benches in K

31 - 102  (Unassigned Engineering data
elements in Beta Delivery)
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Calibration Data : float (ncalib,nstate,nchan,npixels,ntrack)
(Calibration data for each state, channel and
pixel) (AVERAGED OVER SWATH)

(in ncalib dimension)

1=gain

2=offset

3=noise equivalent radiance in watts
meter-2 sr–1

4=Internal Blackbody Radiance in watts
meter-2 sr–1

5=standard deviation of gain

6=standard deviation of offset

7=standard deviation of noise in watts
meter-2 sr–1

8=standard deviation of Internal
Blackbody Radiance in  watts meter-2 sr–

1
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EOSDIS Product Code: MOP02

     Data Product Overview    

The MOPITT Level-2 data product consists of the geolocated, retrieved carbon monoxide
profiles and total column amounts for carbon monoxide and methane.  Ancillary data concerning
surface properties and cloud conditions at the locations of the retrieved parameters are also
included.

MOPITT geophysical parameters are derived from the Level-1B radiances in combination with
ancillary data describing the global distribution of surface and atmospheric temperature and
humidity.  Radiance measurements in the 4.7µm CO band provide the primary information on
the vertical carbon monoxide mixing ratio  profile in the troposphere.  Total column abundances
of carbon monoxide and methane are derived primarily using measurements of reflected solar
radiation in 2 bands near 2.3 µm and best retrievals thus occur in sunlit portions of the orbits.
Clouds have a large influence on the observed radiances and their effects must be modeled
appropriately in the retrieval algorithms

     Data Format   

The MOPITT Level-2 product is archived using the HDF-EOS Swath structure for the Beta
Delivery implementation.  For subsequent deliveries, the HDF-EOS “Point” structure will be
evaluated for use.  These structures are described along with Application Program Interfaces
(APIs) in references listed in Section 2.0.  The Swath structure has been defined to represent time
ordered, multi-channel instrument data.  Where the MOPITT scenes are interrupted randomly by
clouds, much of the regularity of the original cross-track is disturbed resulting in a distribution of
data retrieval locations that are more “Point-like” than “Swath-like”.

HDF-EOS is an extension to the Hierarchical Data Format (HDF) standard developed at the
University of Illinois National Center for Supercomputer Applications.  Readers should
familarize themselves with HDF and HDF-EOS in advance of using the data.

     Data Content

* NOTE -- DIMENSIONALITIES OF ARRAYS ARE DEFINED IN FORTRAN
ORDER, C ORDER IS REVERSED *

  DIMENSIONS  

ntime = unlimited (number of retrieval time/location
points)

nprs = 5 (number of pressure levels in retrieved CO
vertical profile)

nwavlen = 3 (number of wavelengths for retrieved surface
emissivity)
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nbound = 4 (number of boundary points to describe pixel
area aggregate)

ncoord = 2 (number of coordinates for each point in
pixel area aggregate)

ntwo = 2 (Number of reported elements for each
retrieved parameter - i.e. for retrieved
value and its error estimate)

  Data Fields  

The following are HDF VDATA variable names:

Time Count : float (number of time/location in the data set)

Time : double (ntime)  (time of retrieved profile/column amount
observations in Tai93 format. See Appendix A
for description of TAI93 time format)

Latitude : float (ntime) (Latitude of retrieved profile/column
amount observations in degrees -90 to 90)

Longitude : float (ntime) (Longitude of retrieved profile/column
amount observations in degrees -180 to 180)

Solar Zenith Angle : float (ntime) (Solar zenith angle at
location of retrieved data point in degrees)

Satellite Zenith Angle : float (ntime) (Satellite zenith angle at
location of retrieved data point in degrees)

Surface Indicator : float (ntime) (Land,sea,ice,cloud indicator.
TBD values)

DEM Altitude : float (ntime) (Digital elevation model altitude in
Km) (not implmented in Beta delivery)

Num Pixels Aggregate : int (ntime) (Number of original 22X22 km
pixels in aggregate area for cloud cleared
retrieval)

Cloud Description : float (ntime) (Derived cloud fraction)

The following are HDF Scientific Data Set (SDS) variable names

CH4 Total Column : float (ntwo,ntime) (Retrieved CH4 total column
in Molecules/cm2 at retrieval time/location.
Column is measured from base pressure to top
of atmosphere)
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(in ntwo dimension)

1 = Total column value

2 = estimated error bar

CO Total Column : float (ntwo,ntime) (Retrieved CO total column
in Molecules/cm2 at retrieval time/location.
Column is measured from base pressure to top
of atmosphere)

(in ntwo dimension)

1 = Total column value

2 = estimated error bar

CO Mixing Ratio : (ntwo,nprs,ntime) (Retrieved CO mixing ratio
profile at retrieval time/location.)

(in ntwo dimension)

1 = Mixing Ratio value

2 = estimated error bar

(in nprs dimension)

1 = Mixing Ratios at Pressure Level 1 ??

2 = Mixing Ratios at Pressure Level 2 ??

3 = Mixing Ratios at Pressure Level 3 ??

4 = Mixing Ratios at Pressure Level 4 ??

5 = Mixing Ratios at Pressure Level 5 ??

Surface Emissivity : float (ntwo,nwavlen,ntime) (Earth surface
Emissivitiy at three MOPITT observation
wavelengths from climatology)

(in ntwo dimension)

1 = Emissivity value

2 = Estimated error

(in nwavlen dimension)

1 = 2.2 mic

2 = 2.3 mic

3 = 4.7 mic
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Base Pressure : float(ntwo,ntime) (Estimated base pressure of
retrieval. Earth surface for clear area
retrievals, Cloud top for total overcast area
retrievals--in units of mb)

(in ntwo dimension)

1 = pressure value

2 = estimated error bar

Derived Base Temperature : float (ntwo,ntime) (Derived effective
base temperature in deg K)

(in ntwo dimension)

1 = Temperature value

2 = estimated error bar

Derived Base Emissivity : float (ntwo,nwavlen,ntime) (Derived
effective base surface emissivity)

(in ntwo dimension)

1 = Emissivity value

2 = estimated error bar

(in nwavlen dimension)

1 = 2.2 mic

2 = 2.3 mic

3 = 4.7 mic

Aggregate Bounds : float (nbound,ncoord,ntime) (Bounds of pixel
aggregate (TBD) Not implemented in Beta)
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